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ABSTRACT 

 

Metal-organic frameworks stand at the frontiers of molecular electronic research because 

they combine desirable physical properties of organic and inorganic components. They are 

crystalline porous solids constructed by inorganic nodes coordinated to organic ligands to form 

1D, 2D, or 3D structures. They possess unique characteristics such as ultrahigh surface area crystal 

lattices up to 10000 m2g−1, and tunable nanoporous sizes ranging from 0.2 to 50 nm. Their 

unprecedented structural diversity and flexibility beyond solid state materials can lead to unique 

properties such as tailorable electronic and ionic conductivity which can serve as interesting 

platforms for a wide range of electronic applications from photonics, sensors, and energy 

harvesting/storage devices such as photovoltaics, thermoelectrics, supercapacitors to data storage 

systems like memristors. 

Despite the significant growth of MOF materials during the past two decades, the 

fundamental understanding of the resultant electronic and ionic structures at the interface of these 

hybrid materials are still largely unexplored, and the lack of these properties are the basic 

requirements for elucidating the physics and chemistry of the devices—The exquisite role of 

physical electronic properties is crucial for the construction of energy band diagrams of MOF thin 

films, and is key to achieve further advancement in the development of elaborated devices that 

require tunability and control over functionality. With this motivation, powerful surface science 

techniques (e.g. direct and inverse photoemission spectroscopy) have been engaged in this 

dissertation, which provided useful guidelines to access and study the electronic and chemical 

structures (e.g. valence and conduction bands, and core electrons) at the internal interface of the 
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individual hybrid constituents of MOF films. This is achieved using a combination of low intensity 

X-ray photoelectron spectroscopy (LIXPS), ultraviolet photoelectron spectroscopy (UPS), X-ray 

photoelectron spectroscopy (XPS), and inverse photoelectron spectroscopy (IPES). Furthermore, 

the density of states obtained from DFT calculations agreed well with the photoemission spectra 

measurements of the fabricated 2D MOF thin film. Energy level alignment was achieved by 

judicious selection of various organic ligands in 2D MOF architectures, whereas further 

incorporation of various pillaring linkers in the 3D MOFs have modified the HOMO and LUMO 

energy levels as suitable conducting medium for hole or electron transport.  

The fundamental study delivered in this dissertation gives a unique feedback by tailor-

designing the electronic properties of the fabricated 2D to 3D MOF thin films. These crucial 

properties at the interface offer very important understanding and breakthrough in MOFs as 

functional and tunable electronic materials. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Introduction 

Since the prime examples of electronic devices by about 1943 such as vacuum-tube 

electronics, solid-state amplifiers, oscillators, and the technology could be advanced if controlling 

the conductivity of other elaborated devices was achieved[1]. It was until December 1947, when 

a solid-state inorganic transistor was discovered at Bell Laboratories by Shockley Bardeen, and 

Brattain enabling the production of electronic components on a millimeter scale utilizing electron 

currents in doped semiconductor crystals with reservoirs of electrons (n-type), or holes (p-type) 

that can execute the useful tasks accomplished by vacuum tubes. Since then, research and 

advancement in digital electronics are strongly linked to Moore’s law resulting in a reduction in 

size but increase of physical complexity governing devices down to 10 nm in size in 2018. 

However, Moore’s foresaw the rate of progress would reach saturation due to physical size 

limitation because inorganic semiconductors are optimized to the edges of the theoretical limits 

performance that is governed by quantum uncertainties to make transistor hopelessly unreliable[2] 

and expected to end in 2025[2-5] and the International Roadmap For Devices and Systems 

suggested the exploration of alternative routes to the device improvement via heterogenous 

integration of new technologies to enable a new “More Moore” scaling paradigm, and “beyond 

CMOS” technology based on novel materials and physics. 

Molecular electronics[6-9] is conceptually different from conventional solid-state 

semiconductor electronics[10] can overcome the critical limits of miniaturization of electronic 

components and have attracted a growing interest since the discovery of electron tunneling through 
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an organic monolayer by Kun and Mobius in 1971[11], followed by gedankenexperiment of the 

molecular rectifying diodes by Aviram and Ratner in 1974[12] by using molecular orbital 

calculations that show a molecular system compromising donor-spacer-accepter structure allow 

electron transfer under external electric field which exhibits similar behavior of the p-n junction 

of a solid state electronic device. Hence after, discoveries within molecular electronic field 

reporting molecular-scale devices form single molecules to monolayers have elaborated from this 

philosophy.  

Metal-organic frameworks witnessed a growth for the last two decades as attractive 

candidate for solid-state semiconductors. The benefits behind MOFs considered as emerging new 

class of unique electronic/photonic materials because they take advantage of conventional organic 

and inorganic semiconductors in addition to the ordered nanoporous solids that can be doped to 

alter the ionic or conductive properties of these materials. Referring back to Richard Feynman’s 

statement in 1959 that “there’s plenty of room at the bottom”, henceforth by exploiting the 

extremely large surface area and the tunable pore size ranging from 0.2 to 50 nm, can open up 

opportunities for multidisciplinary scientific research such as discovery of their electronic and 

ionic properties at the interface, which lead to study their novel electronic transport phenomena 

which can be realized in various technological devices requiring tunability and functionality. 

The advancement and development of organic semiconductive materials and the realization 

of successful molecular electronic devices such as organic field effect transistors, 

electroluminescent devices, solar cells, sensors, memories, and thermoelectrics started from their 

basic study of their physical electronics at the metal/organic/metal interfaces[13] because they 

have strong impact on the electrical properties. Despite the significant growth of MOF materials 

and applications, their physical electronic property at the interface are still largely unexplored. The 



www.manaraa.com

 

3 

role of these electron properties is essential for the construction of energy band diagrams of 

SURMOFs, which can reveal important feedback about the growth process at the interface, and 

the scientific foundation of metallosupramolecules to wire electronic devices. Hence, powerful 

surface science techniques such as photoemission spectroscopy are engaged in this dissertation 

which provided useful guidelines to access and study the band energy levels which is essential of 

semiconductor device performance. The structure of most MOFs lacks a delocalized electronic 

structure either through bond delocalization or by 𝜋 stacking. For this reason, they act as insulators. 

However, for applications that require electronic transport, it is essential to employ what properties 

are for organic materials that enable to conduct electricity. The choice of porphyrin molecules as 

conductive organic ligands that have small band gap values is an important condition to sustain 

electrical conductivity, whereas ligands with large band gaps will impart insulating properties. For 

certain applications, the porphyrin ligand can also exist in radical anion or cation form, and redox 

effective atoms can be used to dope the materials and perhaps can increase the number of charge 

carriers and therefore improve the conductivity. 

Among a variety of organic conductive ligands presented in literature,[14-16] porphyrin 

molecules[17, 18] were chosen in this dissertation as attractive candidates in building conductive 

MOF nano thin films on functionalize Au surfaces due to their diverse rigid molecular structures, 

large physical dimensions, functionalization, tunability, metalation core, stability, and excellent 

host for guest confinements within the pores. They can form nanoarchitectures with two distinct 

conductivity states. In turn, SURMOFs based on porphyrin can be employed in wide variety of 

molecular nanoelectronic applications due to the important characteristics of their semiconductive 

and redox properties which compromise 𝜋- cation radicals and multiple cationic states and its 

capability to transport and store charges for extended periods. In this work, porphyrin paddlewheel 
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frameworks were synthesized by Liquid-phase epitaxy (LPE) using free base and metalated 

conductive organic ligands (5,10,15,20-tetrakis(4-carboxyphenyl) porphyrin) MTCPP (M= Cu, 

Co, or Ni), and paddlewheel Secondary Building Units (SBU) based on Cu(NO)3 and 

Cu(OAc)2were incorporated to construct 2D SURMOF. Whereas, further integration of various 

organic pillaring linkers such as Pyrazine (Pz) or 4,4’-Bipyridine (Bipy) between the 2D 

frameworks led to the generation of 3D SURMOFs with remarkable change in electronic 

properties. Eventually, the information obtained from the physical electronic experiments can be 

employed in the design of molecular electronic devices such as field effect transistors, 

photovoltaics, sensors, and memristors. 

1.2 Dissertation Outline 

This dissertation is focused on gaining a comprehensive understanding of the electronic 

structures and the energy level alignment of the fabricated MOF thin films and it is structured as 

follows: 

Chapter 1 discusses the research motivation of conductive MOFs as potential candidate for 

electronic devices. This chapter highlights some of conductive MOF materials reported in 

literature and describes the significance of photoemission study on porphyrin-based MOFs. 

Chapter 2 describes the mechanism behind the self-assembly of monolayers, as well as 2D 

and 3D metal-organic framework thin films on suitable functionalized wafer surfaces. 

Chapter 3 describes the incubation procedure and the self-assembly of the SAM, and that 

of the MOFs, and focuses on theoretical, and experimental methodologies behind the electronic 

structure characterizations by direct and inverse PES that gave a direct access to the energy band 

diagrams of the investigated materials. The multichamber analysis system was leveraged for the 

PES investigations of the targeted materials. 
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Chapter 4 discusses the direct and inverse PES investigations of self-assembly of 2D MOF 

thin film. The physical electronic structures of frontier energy levels were obtained and agreed 

well with DFT calculations. The growth at the interface of multilayers was investigated by XPS. 

The PES demonstrated sustained electronic properties as the MOF layers grow in thicknesses. 

Chapter 5 discusses the HOMO and LUMO energy level alignments at the 2D and 3D 

SURMOFs’ interface. The electronic structures particularly the resultant transfer band gaps were 

changed by various metalloporphyrin based ligands as demosnstrated in 2D MOF thin films, and 

by incorporating pillaring linkers with different length, a further tuning of the transfer band gap 

was observed in 3D MOF thin films. 

Chapter 6 summarizes the findings behind the physical electronic properties of MOF thin 

films as functional electronic materials as presented in this study and proposing the future work. 

1.3 Charge Transfer and Electronic Properties of MOFs 

A comprehensive understanding of the physical electronic properties of MOF thin films 

can provide a useful guideline for the design and performance of the chosen material as a suitable 

candidate for specific devices. Hence, an access to energy band diagrams, opens up avenues for 

new physical applications. Grau-Crespo et al. carried out a theoretical study through band structure 

calculations on metal substitution in porphyrin-based MOF, and found out that the control of 

frontier orbital positions enables tuning the bandgaps in a favorable range (2.0 to 2.6 eV) for 

efficient absorption of solar light which is important for solar-fuel production.[19] 

Tuning the interfacial physical electronic properties can achieve promising energy level 

adjustments between the heterostructure interface of MOFs, and device metal electrodes with 

suitable hole or electron transport layers that can facilitate efficient charge carrier flow, and this 

can enhance the light emission, absorption, and charge retention in molecular electronic devices. 
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Knowing the additional ionic properties of MOFs can open the field for modern solid state 

electrochemical devices and advanced memories. The role of suitable self-assembly monolayers 

(SAM)[20, 21] is to host SBUs on the functionalized wafer surfaces with preferred alignment 

directions[22, 23] before the organic ligand is offered. The choice of SAM is also very critical to 

match between the work function of the device metal electrodes and that of the MOF layer to 

achieve sufficient charge injection from the electrodes. The benefits behind of SAM, that they are 

efficient surface chemistry and can be also patterned between device electrode, and easy to be 

tailored for specific applications such as injection, wetting/de-wetting, templating, conductive, or 

insulating layers, and hence can change the device performance without changing the device 

structure or materials. 
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CHAPTER 2: SURFACE MOUNTED METAL-ORGANIC FRAMEWORKS 

 

2.1 Overview 

Metal−organic frameworks (MOFs) have witnessed significant research growth during last 

two decades, as an advanced class of functional porous materials that adapts concepts from crystal 

engineering to self-assemble highly ordered crystalline nano porous[24] 1D, 2D, or 3D structures. 

MOFs are constructed starting with metal holding hubs (secondary building units) and 

organic ligands and are known for permanent high porosity and massive inner surface area[25]. 

These properties, along with the exceptional level of structure variability for both organic and 

inorganic parts make them attractive candidates for wide range applications from catalysis as gas 

separation[26], gas storage[27], chemical and biological sensing[28], and to energy harvesting and 

storage systems.  Because of their tunable structure and functional groups, those range for MOFs 

turned into a standout amongst the most developing fields for chemistry and yielded more than 20, 

000 structures.  

In this dissertation, the focus is on the fabrication of solid-state films using conductive 

MOF materials on functionalized surfaces using SAM well-known as SURMOFs as presented in 

the following sections. 

2.2 SURMOF Synthesis 

2.2.1 Self-Assembly of Monolayers 

Self-assembly is ubiquitous in chemistry, and biology which creates ordered ensembles of 

molecules or ordered forms of supramolecules to demonstrate how particles can interact through 

a balance of attractive and repulsive interactions to produce new noncovalent structures[29-31]
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(Van der Waals and columbic interactions, hydrophobic interactions, and hydrogen bonds),[32] 

The process ofself-assembly was discovered in 1946, by Bigelow et al.[30, 33-35] when the 

formation of well-oriented monolayers by polar organic particles adsorbed onto solid surfaces in 

non-polar solvents, and it took quite a few years until studies on silane monolayers[36], Sulphur 

(thiol) self-assembly[37, 38], carboxylic acids around metal oxides, or hydrogen bonding were 

revealed to form self-assembly on a diversity of surfaces like glass, quartz, silicon, mica, 

aluminum, and also gold and became applicable to a range of fields of nanoscience and 

manufacturing. 

Self-assembly monolayers (SAMs) are two dimensional highly ordered molecular 

assembly formed in organized manner mainly with bottom-up approach by chemisorption on 

appropriate wafer surfaces and are essential prerequisites for the synthesis of MOFs. In essence, 

they can control the growth and alignment of the guest materials in a highly ordered fashion, are 

able to modify the surface with desired acceptor-donor properties, are responsible for device 

performance,  and have been used in many research applications including biological sensors, 

nanoelectronics, electrochemistry, as well as in micro- and nano-electromechanical systems 

(MEMS, and NEMS, respectively)[39]. Self-assembly is an important technology for 

semiconductor patterning due to its unique interfacial properties at the nanoscale level. The easy 

and low-cost manufacturing methods which are applicable to nanoscale surface science help 

defeating the cutoff set by directed assembly such as photo-, or electron beam- lithography. The 

fundamental fabrication method of this assembly is based on dilute solutions that undergo a 

chemical change to produce an ordered molecular pattern through adsorption of a polymer or 

dynamic surfactant on a solid surface (Figure 1). The composed monolayer compromise 1) a head 

group usually contains thiol or methyl moieties to provide an active attachment onto the substrate 
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and possesses flexible attraction towards stabilizing and modifying the interfacial electronic states, 

2) a tail-group which comprises of another functional group at the terminal end that defines the 

surface properties, and 3) Spacer usually an Alkane chain that provides a charge transport between 

both head and tail groups which is the fundamental backbone of the molecule with defined 

thickness that is capable to modify the electrical and optical properties of the monolayer. 

Several techniques can be used to fabricate SAM thin films via two main approaches. Top-

down approach utilizes guided or directed self-assembly of molecules by photo-, ion-, or electron 

beam- lithography to host precised MOF patterns on a functionalized substrate, and it is typically 

followed by wet or dry chemical etching to reveal the desired structure at a few 10 nm scale on a 

small surface area. 

Another two different methods used for positional assembly resulting in a single molecule 

arrangement are atomic force microscopy and scanning tunneling microscopy, however it is a 

time-consuming process and is not viable for large scale fabrication.  

Bottom-up approach allows to molecular self-assembly on a hosting substrate by 

selectively synthesizing adds atoms or molecules that get rearranged to create the final structure 

over large surface area. It is performed by dip coating process or by chemical or physical vapor 

deposition techniques accommodating a nanotechnology scale range from 1-10 nm. Therefore, 

bottom-up molecular self-assembly is an alternate process to directed self-assembly by photo- or 

electron beam lithography since it does not require chemical additives like photoinitiators or 

inhibitors and free from chemical etching step, and most importantly it offers the capacity to 

organize single molecules at the nanometer scale in a shorter amount of time. 

MOFs can be built up on various terminating functional groups (e.g., –N,[40] –NO2, –

NH2, –COOH, and –OH moieties)[41] on various surfaces, and this process is compatible with 
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vacuum technology and nanofabrication. In this context, the molecule 4-mercaptopyridne 

molecule which was chosen in all experiments in this dissertation since it forms coordination with 

the copper paddlewheels from axial positions while facilitating charge transport. 

 

2.2.2 SURMOFs Synthesis 

The fundamental fabrication of MOF thin films on a wide variety of surfaces such as Si, 

SiO2, Alumina, graphite, and Au with modified organic surfaces were demonstrated[42]. 2D 

SURMOFs can be built up initially on functionalized surfaces with carboxylate or pyridine 

terminations among others, by connecting organic ligands with dicarboxylate sites to form 2D 

building block by the presence of metal ion [M2(COO-L-COO)2]𝑛 (M= Zn, Co, Cu, Ru, and L= 

ligand)[43] with microporous or mesoporous structures. SURMOFs with three dimensional 

lattices can be constructed[44] by using pillaring linkers such as Pyrazine[45-47], 4,4′-

Bipyridine[48], or  1,4-diazabicyclo[2.2.2]octane (dabco) as depicted in Figure 2, which 

demonstrates the MOF synthesis by the incorporation of ligand carboxylates and pyridine sites 

that are coordinated orthogonally to the metal ions.[49] 

Figure 1 Scheme of SAM of alkanethiolates designed on a gold surface. Adapted with permission 

from reference [20]. Copyright 2005, American Chemical Society. See Appendix A: Copyright 

permission. 
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2.3 SURMOF Preparation 

The growth of SURMOFs was demonstrated in literature[50] as depicted in Figure 3. A 

silicon substrate was modified with suitable self-assembly monolayers of 3-aminopropyl-

trimethoxysilane (3-APTMS) thus mimicking the ligands used in normal solvothermal synthesis 

and  provides a template for MOF growth,[21] then the functionalized substrate was immersed in 

the metal ion solution of zinc acetate, followed by an immersion in the organic ligand solution of 

L1: 1,2,4,5-tetrakis(4-carboxyphenyl)benzene, or L2: 5,10,15,20-tetrakis(4-carboxyphenyl) 

porphyrin to construct 2D thin film.  By pillaring the metal ions with 5,15-di(4-pyridylacetyl)-

10,20-diphyenyl or 4,4′-Bipyridine, a 3D thin film can be obtained. Alternative synthetic methods 

were introduced by Stock and Biswas[51] including conventional solvothermal, electric heating, 

electrochemistry, microwave heating, mechanochemical, and ultrasonic. Those techniques were 

detailed by Ahn and co-workers[52].  

In this dissertation, SURMOFs were growing epitaxially in a layer by layer fashion based 

on the synthetic procedure described in the previous section, the application of self-assembled 

conductive MOF structures was demonstrated in the chapter 4 using conductive organic ligands 

Figure 2 Schematic representation for the synthesis and formation of the 2D and 3D MOFs. 

Adapted with permission from reference [41]. Copyright 2010, Materials. See Appendix A: 

Copyright permission. 
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(MTCPP, where M: free metal, Cu, Co, or Ni) which served as the backbones of the 2D 

frameworks with the metal ion dicopper paddlewheels. To exert electronic properties, pillaring 

linkers (i.e. Pyrazine or 4,4′-Bipyridine) were introduced to form the 3D MOF thin films.  

A comprehensive evaluation of PES data was performed and correlated with density 

functional theory (DFT) calculations of the density of states (DOS) of the fabricated 2D and 3D 

MOF films involved to yield the molecular-level insights, and the electronic properties which were 

represented in band diagrams as demonstrated in Chapter 4 and 5. 

 

 

Figure 3 (a) Schematic diagram for the SURMOF growth sequence on functionalized Si surface 

by repeated immersion cycles in the metal ion solution, followed by L1 or L2 incubation to 

construct 2D MOF film (II), by incorporating pillaring linkers P1 or P2, a 3D thin film can be 

built. (b) SURMOF growth after N cycles of growth. (c) Representations of building blocks used 

in construction of MOF films. Adapted with permission from reference [50]. Copyright 2013, 

American Chemical Society. See Appendix A: Copyright permission. 



www.manaraa.com

 

13 

CHAPTER 3: EXPERIMENTAL METHODOLOGY 

 

3.1 Incubation Procedure 

Liquid phase epitaxy (LPE) is essentially applied for the growth of semiconductor 

crystalline materials[52-54] in a layer by layer fashion, which enables to form stacked mono- or 

multi-layer structures by one or combination of different materials to produce homo- or hetero-

epitaxial growth on atomically flat surface of another crystal with or without temperature, and it 

is mature technology to fabricate integrated circuits or solar cells[54]. LPE can be performed on a 

wide variety of substrates, very economic when up-scaled to mass production, and simple 

technique to grow crystalline semiconductor materials with the aim to fabricate molecular 

electronic devices.  

The layer growth appears as functions of thermodynamic driving forces in a small 

supersaturation at the solid-liquid interface which is very small due to the reduced surface energy 

of the solution[54] unlike Molecular Beam Epitaxy (MBE) and Vapor Phase Epitaxy (VPE) with 

a layer growth that occurs in a high supersaturation at elevated temperature in a vacuum 

environment.  

The epitaxial conditions can be executed from concentrated solutions at high temperature 

or from diluted concentrations at low temperature. In this dissertation, the LPE is performed from 

dilute solutions because it enables lower growth rates for enhanced thickness control, and 

improved structural perfections and excellent stoichiometry of the layers, and to minimize the risk 

of undesirable spontaneously nucleated crystallites. The growth starts when SAM molecules exist 

in the corresponding solutions started to diffuse and adsorb at the gold surface edges of the 
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substrate. Metal ions, organic ligands, or pillaring linkers can be attached to the anchored SAM 

molecule by self-assembly mechanism in a layer by layer fashion to construct SURMOFs. More 

details about the physical experimental methodology are covered in Chapter 4 and Chapter 5. 

3.2 Photoemission Spectroscopy 

Photoemission spectroscopy (PES) originates from the photoelectric effect initially 

observed by Heinrich Hertz in 1887 when he detected electrons emitted from a secondary arc due 

to the irradiation of incident UV light[55], then this phenomenon was further explained by Albert 

Einstein in his paper related to the theory of photoelectric effect in 1905 which led to the 1921 

Nobel Prize award for the photoelectric law and his work domain of theoretical physics[56]. 

However, it was until 1950’s when a high-resolution spectrometer was made by Kai Siegbhan and 

his co-workers[57] who was awarded half a Noble Prize in 1981 and William Jolly who pioneered 

core level electron spectroscopy, and this technique has been developed further by using synchtron 

radiations since then enabling improved special and higher energy resolutions. 

3.2.1 Physical Principle  

In a direct PES experiment as illustrated in Figure 4, a solid-state material is irradiated with 

a source of a monochromatic light of energy hv causing a photon absorption that undergoes a 

transition from electronic ground state with energy Ei into an excited state with energy Ef provided 

its energy is high enough, this will liberate a photoelectron with energy Ek out of the sample 

surface into a ultrahigh vacuum system (UHV) which enters electron analyser to measure its 

kinetic energy (KE) distribution with respect to the Fermi energy of the sample as defined in 

equation (1), and to investigate the chemical composition and electronic states. Where Ek is the 

kinetic energy of the photoemitted electron (eV), h is Planck’s constant (6.626 x 10−34 J. s), v is 

the frequency of the photon in Hertz (Hz), EB is the binding energy in (eV) which is equal to the 
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ground state energy of the photoemitted electron, and Φ is the work Function of the solid (eV) 

which is equal to the energy difference between the vacuum level and Fermi energy.  

Ek = hv − EB − Φ              (1) 

 

The relation between the energy level diagram and the distribution of the photoemitted 

electrons is illustrated in Figure 5. The energy level of a solid sample consists of core levels with 

binding energy (EB) and valence band. The binding energy EB in solids is referred to the Fermi 

energy (Ef), and Evac in both free atoms and molecules. In case of a metallic sample, the Fermi 

level will be positioned at the onset of the valence band showing no transfer band gap, and has a 

work function (Φ) defined as the minimum energy to remove an electron from the metal and is 

equal to the difference between the fermi energy (Ef) and the vacuum level Evac. The inelastic 

electron scattering which lost its kinetic energy during inelastic collisions are represented by the 

secondary electrons that can be used to calculate the work function from the secondary edge.  

Figure 4 Sketch of typical direct PES setup with two light sources of X-ray gun and He I-UV 

discharge lamp. Light vector potential impinges on a sample, and electrons are excited by the 

photoelectric effect and travel within electron optics to hemispherical electron analyzer to be 

analyzed with respect to their Kinetic energy 𝐸𝑘. 
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When photoabsorption occurs in a valence state or core level with the binding energy (EB), then a 

photoemitted electron will be detected and analyzed whose kinetic energy Ek  according to eq. (1). 

The PES is mainly sub-categorized according to source of radiations into four measurement 

techniques operate with different energy sources such as high energy photons or low energy 

electrons at various scan ranges: Low intensity X-ray photoemission spectroscopy (LIXPS), 

Ultraviolet Photoemission Spectroscopy (UPS), X-ray photoemission spectroscopy, and inverse 

photoemission spectroscopy (IPES). In XPS mode, a photon of energy 1486.6 eV is absorbed by 

an atom in the sample leading to ionization process, and emission of core electron to give crucial 

information about the chemical composition and structure. Whereas in UPS mode, a photon of 

Figure 5 Sketch showing the energy level relations in PE process produced when photons 

impinged on the sample, producing kinetic energy distribution shifted by photons of energy ℏ𝑣. 
𝐸𝐵 refers to the binding energy of electrons, which in the sample referred by the 𝐸𝐹, and 𝐸𝑣𝑎𝑐 in 

free atoms or molecules. Adapted with premisison from reference [58]. Copyright 2003, Springer 

Science and Bus Media B V. See Appendix A: Copyright permission. 
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energy for He I= 21.2182 eV interacts with valence levels of material, leading to ionization by 

removing one of these electrons in the VB or HOMO. Each targeted element or material is 

represented unique spectrum that consists of number of emitted electrons as a function of their 

binding energy[58].  

Inverse PES technique is used to investigate the unoccupied electronic structure, it is 

illustrated in Figure 6, and originates from the inverse photoelectric effect where an electron gun 

impinges the sample with an electron energy form ranged from 0 to 15 eV causing a transition 

from an initial state Ei into an unoccupied final state Ef,  allowing an emission of a photon with 

the energy E= hv which is the difference between Ei and Ef that is detected by a Geiger counter. 

hv = Ei − Ef               (2) 

3.2.2 Photoemission Process 

PES incorporates three independent and sequential step model to manifest the 

photoemission data theoretically which initiated by Berglund and Spicer in 1964 as illustrated in 

Figure 6 Sketch of typical inverse PES setup with electron gun and photon detector. Electrons 

impinges on a sample, and out coming photons will pass by band pass photon detector consisting 

of a Ca𝐹2 window acting the low pass filter, and ionizing gas molecules setting the high pass 

filter, then they bound in the unoccupied state above fermi level representing the conduction band 

state. 
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Figure 7; in the first step, photoexcitation of electron; when an incoming photon is absorbed which 

resulting in exciting and emitting an electron from an initial state orbital into a final unoccupied 

state in the bulk of the material. The second step provides information about transporting the 

excited electron to the surface of the material, and the third step describes the transmission and 

escape of this electron outside the surface into the vacuum where it can be detected and analyzed 

and reveal information about their origin[58]. 

 

3.2.3 The Electron Mean Free Path 

It is crucial that the photoemitted electrons can be transported without colliding with air 

molecules and contained within stringent vacuum environments. The needs for UHV conditions 

for the investigations of surface states of materials can be manifested from Figure 8, which 

demonstrates the electron mean free path as a function of their kinetic energy for various selection 

Figure 7 Sketch of the PES as a three-step process: 1) Photoexcitation of electrons, 2) transport 

to the surface with production of secondary electrons, 3) penetration the surface and escape into 

the vacuum. 
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of a few metals is given by equation 3. The depth of penetration of incoming photons in the range 

of microns and it depends on the density of the chosen material, since the electron mean free path 

extends only in a very few angstroms, this means only  electrons will be excited and emitted from 

the top of a few very thin layers which can be detected, and therefore the study of the sample 

required atomically clean surface to avoid interference from adsorbed impurities, otherwise the 

electrons will be absorbed by adsorbed contaminants and impairs the investigation of the sample 

surface. Electron interacting with surface yields appreciable photoemission information which 

makes PES advantageous to study the surface properties, however it requires vacuum of higher 

than 10−10 torr to prevent atoms or molecules from sticking onto the surface, which can form 

contamination monolayers. 

 

Figure 8 Electron mean free path as their function of their kinetic energy for various metals. 

Adpated with permission from reference [58]. Copyright 2003, Springer Science and Bus Media 

B V. See Appendix A: Copyright permission. 
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λ = E / {EP
2[β ln(γE) − (C/E) + (D/E2)]}                              (3) 

where λ is IMFP in Å, E the electron kinetic energy in eV, EP is the free electron plasmon energy 

[28.8 (Nvϱ/M)
1/2

], ϱ is the density in g. cm−3, NV is the number of valence electrons per atom 

or molecule, M, β, γ, C, D are atomic or molecular weight parameters[58]. 

3.3 X-ray Photoelectron Spectroscopy (XPS) 

X-ray Photoelectron Spectroscopy is also known as Electron Spectroscopy for Chemical 

Analysis (ESCA), is one of the powerful surface science techniques to explore the first few atomic 

layers due to the mean free path of electrons (i.e. in solids is very small), and assign chemical states 

to the detected atoms. Surface analysis by XPS involves bombardment of a solid-state material in 

vacuo with monoenergtic soft X-rays, then photoelectrons are ejected from the different atomic 

shells of the element under investigation. The binding energies of electrons in the different shells 

can be observed in a spectrum which constitutes one of the most accurate sources of information 

on atomic level structure. The spectrum is obtained as a plot of the number of detected electrons 

per energy interval versus their binding energy. Individual element has a unique spectrum, the 

spectrum from a mixture of elements is represented by the sum of the peaks of the individual 

constituents. Quantitative data can be obtained from the peak height or area, and identification of 

chemical states often can be made from exact measurement of peak positions and separations, as 

well as from certain spectral features.  

3.3.1 Basic Principles of X-ray Photon Generation 

As illustrated in Figure 9, high energy electron bombards a twin anode made of either Al 

or Mg, causing ionization of electrons in core levels which generates X-rays radiation lines (𝐾𝛼 1/2) 

at energies of 1489.6 and 1253.6 eV, respectively. In addition to this process, Bremsstrahlung 

radiation is also produced. The irradiated area on the sample is elliptically shaped with an area of 
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1 to 2 cm2 depending on the anode-sample distance. The aluminum radiation window prevents the 

Bremsstrahlung radiation and reduce the input of stray electrons from electron analyzer. 

 

3.3.2 Spectrometer 

PHOIBOS spectrometer is based on hemispherical deflection analyzer which consists of 

two hemispheres as depicted previously in Figure 4, the outer hemisphere is negatively charged 

which repels the incoming electrons, and inner hemisphere is positively charged which attracts the 

incoming electrons. It allows the energy of incoming charged particles entering through an 

entrance slit fitted with electronic optics to facilitate the transmission of a photoemitted electrons 

to the detector. When a fixed electric field gradient is applied across an outer hemisphere, only 

particles with specific kinetic energies are permitted to travel and make it to the detector. Whereas, 

electrons with lower kinetic energies will be deflected toward the positively charged outer 

hemisphere, and electrons with higher kinetic energies will approach the negatively charged inner 

hemisphere. Photons which bombarding the surface of a sample can result in the emission of 

photoelectrons as manifested by equation (1). The electron analyzer measures the kinetic energy 

of the electrons leaving the sample, if the X-ray energy and the kinetic energy of the electrons 

leaving the sample are known, then the binding energy of photoemitted electrons can be obtained. 

Figure 9 Principle of operation.  
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Figure 11. Au 4f core level XPS spectra of sputtered Au film. 
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In essence, each element has different and unique binding energy of specific atomic shells. The 

atomic shells of an element under X-rays bombardment absorb the photon energy then 

photoelectrons will be emitted to enter the electron analyzer to assign chemical states to the 

detected atoms. The binding energies of electrons in the different shells can be observed in a 

spectrum as illustrated in a typical XPS survey of sputtered Au film in Figure 10. The identification 

of emission characteristics attributed to the core level chemical states can be observed from the 

peak positions and separations, as well as from certain spectral features with respect to their 

binding energies. 

 

A high resolution XPS spectrum measured on Au film is shown in Figure 11. The Au 4f 

region reveals two spin-orbit doublets into the Au 4f7/2 and Au 4f5/2 positioned at 84, and 87.7 eV 

respectively, a distinguished separation of its spin-orbit components value is found at 3.7 eV with 

asymmetrical peak shape. 

Figure 10 XPS survey spectra of sputtered Au film showing the count rate of photoelectrons as a 

function of binding energy. The core emission levels of Au are positioned at corresponding 

energy values as shown in the table. 
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3.4 Low Intensity X-ray Photoemission Spectroscopy (LIXPS) 

Low intensity X-ray photoemission spectroscopy (LIXPS) uses an X-ray with low photon 

density of Mg K, 1253.6 eV, standby mode: 0.1 mA emission current to reveal the work function 

of the surface from the secondary edge of the spectrum. It gives information about the energy 

required to emit an electron from the fermi level of the material into a vacuum environment. This 

accurate measurement allows to avoid any photochemical reactions or modifications on the 

targeted surface which often occur after UPS measurement as charging artifacts. LIXPS is less 

affected by this issue which can be seen on organic materials due to the low conductivity of these 

molecules that cause peak shifts by charging phenomena compared to UPS. LIXPS is conducted 

in this dissertation prior and post UPS measurement to reveal any photochemical modifications 

caused by UV irradiations. Figure 12 Shows the LIXPS spectrum of sputtered clean Au film, the 

secondary edge (SE) is located at high binding energy between 15 and 17 eV which is defined by 

Figure 11 Au 4f core level XPS spectra of sputtered Au film. 
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the work function of the sample. The work function is determined by the difference between the 

energy of the X-ray photons (21.2182 eV) and the Au binding energy of the SE value of 15.97 eV, 

and by adding the analyzer correction factor (bf) value of approximately 0.1 eV. 

Wf =  ℏν − SE + bf                                   (4) 

 

3.5 Ultraviolet Photoemission Spectroscopy (UPS) 

Ultraviolet Photoemission Spectroscopy (UPS) uses UV light to generate incident photons 

radiations by using a capillary discharge UV lamp from He (I) radiation of energy ranges from 10 

to 50 eV on a solid-state material to examine the valence electron density of states. The narrow 

line width of UV excitation is in few meV which makes it more advantageous over X-rays without 

further monochromatization, and due to quasimonochromatic character of its excitation lines 

Figure 12 LIXPS spectra of sputtered clean Au film. The normalized secondary edges were 

measured with LIXPS before (LIXPSa, black spectra) and after (LIXPSb, red spectra) UPS. 
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provides a higher electron energy resolution capability of about 0.01 eV to reveal molecular 

vibrational structures. At low photon energies between 20 to 40 eV which is lower than the X-ray 

radiations value of 1253.6 eV, the s-like valence electron structures are minimized in comparison 

with p-like orbitals. At 40 eV, d-like valence electron structure can be revealed. Band structure 

calculations can be used in conjunction with UV excited photoelectron spectra to reveal more 

information about surface chemical analysis.  

The UP-spectrum of valence electronic structure measured on sputtered clean gold surface 

is shown in Figure 13. The secondary edge (SE) is located at high binding energy from which the 

work function can be calculated as demonstrated in equation 4; where 𝑊𝑓 is the work function in 

eV can be obtained from subtracting the secondary edge (SE) cutoff from the UV excitation energy 

(ℏ𝜈 = 21.2182 𝑒𝑉), and by adding the analyzer broadening factor value of 0.1 eV. The surface of 

the certain samples might be sensitive to high photon density of UV irradiation and may result in 

charging artifacts, which can build up a positive charge due to the incomplete replenishment of 

ejected photoelectrons or due to the surface photochemical modifications during the measurement. 

The broad hump after the SE is as a result of inelastic scattered electrons escaped form the material 

surface and has no information related to the electronic structure. Valence band structures are 

located at low binding energies where Au 5d band contribution is revealed. The d band doublet 

emission peaks contain hyper-fine structures positioned at 6.15 and 3.7 eV which attributed to the 

overlap of filled 5d orbitals from gold atoms[59]. The drop-in intensity at lowest binding energy 

is assigned to valence band for inorganic materials or HOMO onset for organic materials, and this 

onset coincides with the Fermi level which is positioned at 0 eV for gold or other (semi)metallic 

surfaces. Whereas, a shift of this onset toward high binding energies gives information whether 

the surface has semiconductive or insulating property. The valence band emission from UPS 
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measurement along with the conduction band emission from IPES provide rich information about 

the band gap of the material as well as crucial information about charge injection barriers. 

 

3.6 Inverse Photoemission Spectroscopy (IPES) 

As manifested previously in Figure 6, the inverse photoemission spectroscopy (IPES) uses 

an electron gun that impinges the surface of the sample with monochromatic electrons which 

bounds with an unoccupied band state above Fermi level, and then falls into lower lying 

unoccupied band state, as a result of this process, photons are emitted from the sample into 

vacuum, then recorded by a photon detector to give information about conduction band or LUMO. 

Figure 14 shows typical IPES scan on Au film. The onset of conduction band is positioned 

the fermi level 0 eV for Au and other metals, and this is a crucial property of the targeted material 

Figure 13 The characteristic of high-resolution UP-spectrum of Au surface showing the 

secondary edge cutoff at high binding energy, the inelastic scattered electrons, valence band 

structure, and fermi level positioned at 0 eV. 
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to determine the band gap of semiconducting and insulating surfaces in conjunction with the 

valence band value from UPS measurement. 

 

3.7 UHV Multi-Chamber Analysis System 

All experiments performed UHV multi-chamber analysis system (SPECS Nano Analysis 

GmbH, Berlin, Germany) under ultrahigh vacuum (UHV) conditions (2 × 10−2 mbar base 

pressure) as depicted in Figure 15. The system consists of a fast entry lock, transfer chamber for 

sputtering, atomic layer deposition chamber, deposition chamber for metal evaporation and 

electrospray deposition, and analyzing chambers equipped with X-ray, ultraviolet, and inverse 

photoemission spectroscopy (XPS, UPS, and IPES, respectively as illustrated in a physical setup 

shown in Figure 16. A homemade acrylic glovebox was attached to the load lock, which enables 

a direct transfer of the sample from the sample preparation area under 99.995% N2 into a vacuum 

system, with a sequence of surface cleaning and direct and inverse PES measurement of a reference 

Au sample, which is followed by transferring the sputtered clean sample into the glove box for 

SAM functionalization, and MOF deposition via incubation procedures. 

Figure 14 IPES of Au film showing the onset of conduction band state coincides with the fermi 

level. 
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The advantage of such system is the ability to perform PES measurements on the 

SURMOFs in-situ without exposing the sample to the ambient. This is crucial system is to allow 

accurate investigations of the physical electronic and chemical properties, and interfacial growth 

Figure 15 Simplified schematic of the UHV multi-chamber analysis system used for direct and 

inverse PES measurements on SURMOF. The system consists of a glove box, transfer chamber, 

ALD, deposition chamber, and analyzing chamber. 

Figure 16 The multi-chamber deposition and characterization systems. 
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of MOF thin films. Such characterizations are important and has implications on the energy level 

alignments which provides the scientific foundation of molecular junctions and nanoelectronic 

devices. 

3.8  Experimental Variability of Photoemission Measurements 

In this dissertation, the resultant work function values of MOF materials were obtained and 

compared with the Au standard measurements as presented in the following two chapters. The 

uncertainty factor using an energy step function with a value of 0.10 eV accounted in the equation 

(4) for the analysis system’s resolution. A fitting procedure was written and applied by IGORE 

software to calculate the accurate values of the secondary edges from LIXPS and UPS 

measurements.The XPS survey spectrum in Figure 10 uses high pass energy mode in the analyzer 

system which enables more electrons to reach the detector and produces high intensity spectrum 

with a high signal to noise ratio for individual core level emission features but at the expense of 

scarifying energetic resolution. This is still reasonable as it is accounted for a qualitative analysis 

related to the elemental composition of a targeted sample. Whereas, the high magnification spectra 

in Figure 11 uses low pass energy mode which results in a much lower intensity but with drastically 

improved resolution compared with the wide-scan survey spectrum, this enables to detect finer 

details such as peak shifts due to chemical change or structural evolution, or multiplet peaks related 

to information from chemical elements existed in various chemical environments.  

The major advantage of UPS measurements lies in its high surface sensitivity and 

resolution value of 10 meV which is related to the narrow linewidth of the electronic transition in 

the discharge process that enables precise analysis of the hyper-fine structure of the valence band 

features. The variability of the several experiments confirmed on SUMOFs by the control 

experiments produced the same HOMO values even though the MOF components were selected 
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from different batches, and the HOMO features at the MOF interface is consistent as layers grow 

in thicknesses. 

The resolution analysis of IPES measurements is about 0.4 eV, this accounts for the current 

setup of the Geiger photon counter that uses a CaF2 window with a low-pass filter with 10.08 eV 

cutoff energy, and uses an Acetone vapor mixture with Argon utilized as ionization gas with a 

high-pass cutoff energy value of 9.69 eV. A spectrum was calibrated on sputtered Au film and is 

assessed to a value of 4.89 eV. Then, the energy scale was modified by positioning the Fermi edge 

at 0 eV.  This was taken as a reference to quantify the conduction band onset as well as the LUMO 

level from measurements on the SURMOFs. 
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CHAPTER 4: ADVANCED PHOTOEMISSION SPECTROSCOPY INVESTIGATIONS 

WITH DFT CALCULATIONS ON THE SELF-ASSEMBLY OF 2D METAL-ORGANIC 

FRAMEWORKS NANO THIN FILMS1 

 

4.1 Abstract  

Metal-organic frameworks (MOFs) deposited from solution have the potential to form 2-

dimensional supramolecular thin films suitable for molecular electronic applications. However, 

the main challenges lie in achieving selective attachment to the substrate surface, and the 

integration of organic conductive ligands into the MOF structure to achieve conductivity.  The 

presented results demonstrate that photoemission spectroscopy combined with preparation in a 

system-attached glovebox can be used to characterize the electronic structure of such systems. The 

presented results demonstrate that porphyrin-based 2D MOF structures can be produced and that 

they exhibit similar electronic structure to that of corresponding conventional porphyrin thin films. 

Porphyrin MOF multilayer thin films were grown on Au substrates pre-functionalized with 

4-mercaptopyridine (Mpy) via incubation in a glove box, which was connected to an ultra-high 

vacuum system outfitted with photoelectron spectroscopy. The thin film growth process was 

carried out in several sequential steps. In between individual steps the surface was characterized 

by photoemission spectroscopy to determine the valence bands and evaluate the growth mode of 

the film. A comprehensive evaluation of X-ray photoemission spectroscopy (XPS), ultraviolet 

                                                 

1This chapter was adapted with permission from [40]. Copyright 2016, American Chemical Society. DOI: 

10.1021/acsami.6b10340. See Appendix A: Copyright permissions. 
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photoelectron spectroscopy (UPS), and inverse photoemission spectroscopy (IPES) data was 

performed and correlated with density functional theory (DFT) calculations of the density of states 

(DOS) of the films involved to yield the molecular-level insights into the growth and the electronic 

properties of MOF-based 2D thin films. 

4.2 Introduction 

The past two decades have witnessed a growing interest in the area of metal-organic 

frameworks (MOFs), an advanced class of functional porous materials that adopts concepts from 

crystal engineering to self-assembled highly ordered crystalline porous materials[24]. MOFs are 

highly attractive to both academic and industrial communities due to their potential applications 

such as heterogeneous catalysis[60], gas storage[27], gas separation[26], drug delivery[61], 

sensing[28], or storage devices[62]. As crystalline porous coordination polymers, MOFs are 

constructed by connecting metal ions or clusters with organic based ligands. This results in porous 

crystalline nanoscale frameworks composed of a variety of molecular compounds containing 

highly tunable empty space for guest molecule adsorption. Meanwhile, this also makes these 

materials interesting for controlled mass transfer and opens the prospect of creating tailor designed 

materials with both electronic and ionic conductivity. 

In particular, the self-assembly of conductive MOF structures on wafer-type supports and 

the investigation of their performance in device structures are of great interest for next-generation 

electronic device development. Such devices can be manufactured through a combination of 

standard lithographic techniques and molecular self-assembly of embedded MOF structures. The 

resultant materials integrating ionic and electronic conductivity in one single structure would 

exhibit promising applications in energy storage, fuel cell and other areas. Probably the prime 

example are memristive[63],[62] circuit elements as demonstrated by Hewlett Packard[64], which 
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demonstrate the high significance of materials with combined electronic and ionic conductivity for 

future technological applications. Memristors enable a remarkably simple (compared to 

transistor/capacitor based classic static or dynamic random access memory(RAM)) design of 

memory elements, which only need two terminals for read and write operations, while being able 

to store the information for long times without power. 

The well-developed crystal engineering strategy enables us to custom design MOFs 

structures via the judicious selection of the metal ions and organic linkers, which also suggests the 

self-assembly of MOF-based device structures with electronic conductivity is viable. Among a 

variety of organic linkers used to fabricate nano thin films, porphyrin ligand, because of their 

versatility and functionality, present tremendous potential when combined with suitably chosen 

active SBUs. However, when applying MOF or related coordination materials on nanoelectronic 

devices, the main challenges to be addressed lie in controlling the size of objects at the nanoscale 

and aligning such objects on surface of various substances in certain desired ways without losing 

their original electronic properties. 

In essence, π-stacked conjugated molecular structures need to be achieved in such 

materials. This was shown recently by Narayan et al[14]. who synthesized a conducting porous 

framework based on columnar stacks of TTFTB (tetrathiafulvalene tetrabenzoate). Recent research 

on covalent organic frameworks (COFs) has shown that conductive molecular materials like 

porphyrins and phthalocyanines can be used for the formation of porous structures with charge 

transport capabilities [65], [66]. This suggests that these molecular building blocks should be 

employable for conductive MOF structures. 

The tailor design of conductive MOF structures makes it necessary that the electronic 

structure can be measured to provide feedback for the design process. The presented research 
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demonstrates that photoemission spectroscopy in combination with clean structural synthesis in a 

vacuum system attached glove box can be used for the characterization of the frontier orbital 

structure of self-assembled MOF films. This research is based on an established track record of 

this measurement technique for the characterization of the electronic structure of interfaces 

composed of conductive small molecular as well as polymeric materials. 

In essence, the photoemission spectroscopy results of both UPS and IPES measurements 

yield the density of states of the highest occupied molecular orbitals (HOMO), and lowest 

unoccupied molecular orbitals (LUMO), respectively, relative to the Fermi level. Since this 

measurement occurs in ultra-high vacuum and also is very surface sensitive (only the top 5 nm are 

‘seen’) the investigated samples need to be prepared in vacuum or in the inert environment of a 

vacuum-attached glove box. Such measurements were successfully demonstrated in the past for a 

variety of molecular materials such as conductive polymers, small molecular electroluminescent 

materials, self-assembled monolayers or ribonucleic acids. 

In this paper the application of this technique to self-assembled conductive MOF structures 

is demonstrated. Self-assembled MOF thin films were grown in several steps, while characterizing 

the electronic structure depending on the layer thickness. In these experiments MOF thin films 

composed of TCPP linkers and dicopper paddlewheel secondary building blocks (SBU) were self-

assembled on top of SAM-terminated (MP) Au substrates. The TCPP molecule is a prototypical 

linker-molecule candidate for conductive MOF structures, and well-suited for the presented 

measurements since similar measurements were already demonstrated successfully on evaporated 

porphyrin thin films[67, 68],[69]. The molecule MP was chosen as SAM substrate for the structure 

since it is capable of coordinating to the copper paddlewheels from axial positions while 

facilitating charge transport. These experiments were accompanied by computational DFT 



www.manaraa.com

 

35 

calculations on the DOS of the prepared MOF structures. These calculations showed strong 

agreement and allowed the interpretation of the photoemission data. 

4.3 Experimental and Simulation Sections 

4.3.1 Materials 

MOF Materials: MOF Synthesis. Cu(NO3)2 and TCPP (5,10,15,20-tetrakis(4-

carboxyphenyl) porphyrin); 4-mercaptopyridine (96%), as well as anhydrous ethanol were 

purchased from Fisher Scientific. The N,N-dimethylformamide (DMF), (ACS, 99.8+%) was 

obtained from Alfa Aesar, and the thin film Au (100nm Au deposited on a 20nm Ti adhesion layer 

on glass slides) substrates were purchased from EMF Corp. (Ithaca, NY). 

4.3.2 Sample Preparation 

All experiments were performed in a commercial multi-chamber system (SPECS Nano 

Analysis GmbH, Berlin, Germany) under ultrahigh vacuum (UHV) conditions (2 ×10−10) mbar 

base pressure). The system consists of a fast entry lock, transfer chamber for sputtering, and 

analysis chambers equipped with X-ray, ultraviolet, and inverse photoemission spectroscopy 

(XPS, UPS, and IPES respectively). A home-made acrylic glovebox was attached to the load lock 

to enable a direct transfer of the sample from the sample preparation area into the vacuum. The 

glovebox was filled with 99.995% N2 and kept under slight overpressure to suppress sample 

contamination from the ambient environment during sample preparation. 

The thin film Au (100nm thick) substrates were cut into 1×1 cm2 pieces and mounted on 

a substrate holder via screws. This allowed for direct electrical contact between the Au layer and 

the chamber ground to avoid charging effects.  The substrates were then transferred into UHV 

chamber for sputtering to clean the Au surface. A SPECS IQE 11/35 ion source with a kinetic 

energy of 5 KeV and an emission current of 20 mA was used and the sample sputtered for 40 min 



www.manaraa.com

 

36 

at an Ar pressure of 4 mbar[70]. After sputtering, the clean Au substrates were characterized by 

the standard measurement sequence beginning with an LIXPS measurement (Mg K, 1253.6 eV, 

standby mode: 0.1 mA emission current), then followed by UPS (He I, 21.2182 eV), XPS (Mg K, 

1253.6 eV, 20 mA emission current), and finally an IPES measurement (electron gun, Kimball 

ELG-2/EGPS-1022, and a Geiger counter with an energy resolution of about 0.43 eV). 

The deposition experiments started by loading an Au substrate into the glovebox for the 

growth of the SAM via incubation. The sample was placed into the bottom of a vial containing the 

SAM solution (1 mM SAM solution of 4-mecaptopyridine in ethanol stirred at 80 °C for 24 hours). 

The vial was sealed and placed in the glovebox for 24 hours at 40 °C. After cooling the sample to 

room temperature, it was removed then rinsed gently with ethanol, deionized water, and dried with 

a stream of 99.995% N2. 

In the first MOF experiment (A), the Au functionalized substrate was alternately immersed 

into the metal ion solution (13.329 mM Cu(NO3)2 solution in DMF stirred on a hot plate at 80 °C 

for 24 hours) for 12 hrs followed by an immersion step in the organic ligand solution (1.2645 mM 

TCPP solution in DMF stirred on a hot plate at 80 °C for 24 hours) for an additional 12 hours, 

three sequential incubation cycles were performed in the glovebox at a temperature of 40 °C. In 

between each immersion step, the substrate was rinsed with fresh DMF and deionized water to 

remove excessive unbound molecules from the surface[71], and dried in a stream of 99.995% N2 

as depicted in (Figure 17), which shows the expected crystal structure[72].  Following each 

individual immersion cycle, the surface was characterized with the above LIXPS/UPS/XPS 

sequence.  

In a control experiment (B), fresh TCPP and Cu(NO3)2 solutions were mixed together in a 

vial following the same concentrations and conditions reported in the main experiment (A). An 
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identical Au functionalized surface was immersed into a vial containing the mixed solution for 

three incubation cycles in the glovebox each for 24 hours at 40 °C (identical conditions as in 

experiment A). After each complete incubation cycle, the substrate was rinsed with DMF and 

deionized water, and then dried with 99.995% N2. This was followed by transfer into the attached 

vacuum system and PES characterization.  

In the second control experiment (C), the Au functionalized surface was immersed in the 

TCCP solution (same concentration and experimental conditions as were used in experiment (A)), 

but the immersion in the Cu(NO3)2 solution was omitted. After the experiment, the sample was 

inserted into the vacuum system and then characterized by PES. 

 

Figure 17 Schematic depiction of the growth sequence: MOF films were grown in three 

incubation cycles on a MP SAM-terminated gold substrate. First, the sample was incubated in 

the metal ion solution (Cu(NO3)2), followed by immersion into the organic ligand solution 

(TCPP).  Each incubation step was completed by rinsing the sample in DMF and deionized water. 

Color assignment: carbon, gray; oxygen, red; sulfur, green; nitrogen, blue; cooper, cyan. Adapted 

with permission from [40]. Copyright 2016, American Chemical Society. 
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4.3.3 DFT Calculations on the Electronic Structure 

The molecular modeling software Gaussian09 was used to perform all-electron DFT 

calculations on the metallated and free base TCPP molecules connected to Copper paddle 

wheels[72]. The computed structure of TCPP can be seen from Figure 18a and that of CuTCPP 

shown in Figure 18b. 

The Gaussian basis set 6-311G** and DFT exchange correlation functional B3LYP with 

2-dimensional periodic boundary condition were employed. The ground-state geometries of both 

MOF structures were fully optimized in vacuum, then the electronic structure and the energy levels 

were calculated. By considering possible deformation and thermal effects in the system, the 

theoretical DOS spectra are plotted by Gaussian broadening of the intensity around each energy 

eigenvalue. The results are compared with experimental UV photoelectron spectra in the 

discussion section. 

 

4.4 Results 

4.4.1 XPS Measurements  

The standard LIXPS-UPS-XPS measurement sequence was carried out after each sample 

preparation step. Figure 19 shows the evolution of the C 1s, N 1s, O 1s, S 2p, Cu 2p, and Au 4f 

Figure 18 Computed structures of MOF molecules connected to Cu paddle wheels. (a) Free base 

TCPP, and (b) metallated CuTCPP. Adapted with permission from [40]. Copyright 2016, 

American Chemical Society. 
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core level emission lines throughout the three experiments A, B, and C. The bottom spectra 

correspond to the sputtered Au substrate as measured for experiment A. Experiments B, and C 

yielded similar spectra. The following spectra correspond to the incubations steps performed on 

each of the samples. The spectra measured for the clean substrate shows only weak O 1s and C 1s 

peak emissions at around 531 eV, and 284.8 eV respectively. These peaks are related to residual 

contamination from the sample holder assembly. 

In the first experiment (A), the Au 4f signals were attenuated gradually after each 

incubation cycle, the 3rd cycle has negligible intensity compared to the 1st cycle which clearly 

indicates the surface has a substantial MOF growth with increasing thickness. The intensities 

before and after incubations allowed for an estimation of deposited layer thickness using the 

Lambert-Beer law with a mean free path for the emitted electrons of Au 4f through SAM[73],[74], 

and porphyrin derivatives[75],[76] respectively. The approximate thickness of the SAM is 0.45 

nm, which is commensurate with the length of the molecule assuming it is aligned vertically on 

top of the Au surface. The individual layer thicknesses of the MOF 1st cycle, MOF 2nd cycle, 

MOF 3rd cycle, are 39.94 Å, 77.13 Å, and 112.7 Å respectively. The Au 4f emission features of 

the second (B) and third (C) experiments only show attenuation consistent to the SAM incubation 

cycle, but there is no further attenuation after incubation in the MOF solutions. This indicates that 

the MOF only grows if the SBU is present on the surface before the linker is offered. 

The S 2p emission feature of the SAM has a binding energy of about 161 eV consistent 

with S in the thiolate form bonded to an Au surface[77]. This emission feature disappeared only 

in the first experiment (A) during the MOF incubation cycles, while it remained unchanged in the 

control experiments. This further supports the conclusion that the MOF film only grows if Cu 

(NO3)2 was deposited prior to incubation in TCPP.  A similar behavior is seen in all other MOF 
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overlayer related emissions. Only in experiment (A) MOF related emissions occur, while 

experiments B and C show not much change after the SAM has grown.  

The aromatic hydrocarbon related C 1s emission features of both SAM and TCPP 

multilayers produce a peak at about 285 eV. The distinguishing element in the C 1s spectra of the 

MOF layer has a smaller emission at about 288 eV, which is related to C-O bonds, which are found 

in the COOH groups of the MOF[78],[79]. 

This feature only occurs in experiment A, while the emissions seen in B and C retain their 

shape, intensity and binding energy during the incubation steps. This support that no film grew on 

top of the SAM layer.  

The O 1s emission featured show a similar behavior. There is a small O 1s emission feature 

present after the SAM growth step. This emission line is related to residual surface contamination 

of surrounding areas on the substrate holder [80]. In experiment (A), this emission is attenuated at 

the expense of a strong new peak that is related to the COOH groups present in the MOF film [81]. 

Control experiment (B) shows a change in the O 1s spectrum due a small amount of deposited 

Cu(NO3)2 indicating that some molecules deposited on the surface during the incubation step. 

Experiment (C) shows again no change relative to the initial SAM layer, indicating that no film 

deposition. This clearly shows that Cu (NO3)2 needs to be present on the surface before incubation 

in TCPP if a thin film is to be grown.  

The Cu 2p emission from the Cu(NO3)2 (orange spectrum) shows only contributions of 

Cu(I) with a binding energy of 932.4 eV. However, once the TCPP was added onto the surface, 

the Cu 2p emission (purple spectrum) revealed Cu(II) characteristic at 936.1 eV and additional 

satellite peaks at 940 eV and 944.3 eV assuming a Cu paddle wheel SBU was assembled by self-

organization in situ by the presence of TCPP. The Cu 2p emission from the Cu(NO3)2 (orange 
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spectrum) shows only contributions of Cu(I) with a binding energy of 932.4 eV. However, once 

the TCPP was added onto the surface, the Cu 2p emission (purple spectrum) revealed Cu(II) 

characteristic at 936.1 eV and additional satellite peaks at 940 eV and 944.3 eV assuming a Cu 

paddle wheel SBU was assembled by self-organization in situ by the presence of TCPP. This is 

also supported by the particular structure of the observed emissions, which agree well with the 

data published by other groups[82], [83]. In addition, the binding energy of the spectra changes 

significantly once the MOF film forms. This is seen in the sequence of spectra of experiment (A) 

as the MOF film grows in thickness. The initial spectrum measured after the Cu(NO3)2 deposition 

step is gradually attenuated, while a spectrum with peaks shifted by about 3 eV to higher binding 

energy arises. This indicates a charge transfer from the Cu(NO3)2 building blocks to the TCPP 

spacers as the MOF forms.  

The analysis of the N 1s spectra sequence is consistent with the Cu 2p series. The initial N 

1s spectrum (red) of the SAM shows a broad peak at about 400.1 eV, which confirms the 

deposition of MP on the Au surface. The N 1s spectra measured during the growth of the MOF 

film (green spectrum) during experiment (A) exhibit distinctly different emission features that are 

attributed to a molecule containing pyrolic (-NH-) and iminic (-N=) nitrogen species. These are 

strong indicators that an interaction between Cu atoms and TCPP molecules took place. These 

emission lines are located at 397.9 eV and 399.8 eV, respectively; which are in a close agreement 

with other experiments found in the literature [84],[85]. The shift of Cu 2p to higher binding 

energies and the N1s to lower binding energies indicate that electrons were donated from the 

copper atoms to the TCPP molecules , as electron loss usually resulys in higher binding energies 

[70]. 
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In summary, the XPS data clearly show that a layered self-assembly process of a MOF 

structure occurs between the Cu(NO3)2 and TCPP molecular units when Cu(NO3)2 is deposited on 

the surface before the TCPP incubation steps. When Cu(NO3)2 and TCPP are directly mixed in 

solution, this process does not occur, possibly due to the formation of 3D MOF structures in 

solution which do not deposit on the presented SAM surfaces. 
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Figure 19 C 1s, N 1s, O 1s, Au 4f, S 2p, and Cu 2p core level XPS spectra measured before and 

after step-by-step incubation on the functionalized Au substrate (A) in the Cu(NO3)2 solution, 

then in the TCPP solution for three cycles sequentially, (B) in both the Cu(NO3)2 and the TCPP 

solution for three cycles sequentially, and (C) only in a TCPP solution for two cycles. Adapted 

with permission from [40]. Copyright 2016, American Chemical Society. 
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4.4.2 LIXPS, UPS, and IPES Measurements 

Prior to each XPS measurement sequence, the samples were characterized with UPS and 

LIXPS. LIXPS uses the XPS, an X-ray gun in its standby setting, i.e. uses a very low photon 

density. This low density is still enough to perform a successful measurement of the secondary 

edge, i.e. the work function can be detected. This approach allows the detection of charging 

artifacts that often occur during UPS measurements due to the relatively high photon density of 

UV sources. Especially on organic materials this can be an issue due to the often-low conductivity 

of these materials, which prevents the effective replenishment of photo extracted electrons. This 

causes charging, which manifests itself in peak shifts. LIXPS is much less affected by charging 

phenomena, i.e. comparing UPS, and LIXPS work function measurements reveal the onset of 

charging artifacts in UPS measurements [86], [87]. 

The UP- and LIXP-spectra measured in conjunction with the XPS spectra of Figure 19 are 

shown in Figure 20. The center graph shows the full UP-spectra measured after each experimental 

step. The left graph shows the corresponding LIXPSa and LIXPSb (dashed lines) spectra as 

measured before and after the UPS measurements, respectively. The right part of the figure shows 

the valence bands/HOMO regions of the spectra. 0 eV represents the Fermi energy.  

The secondary edge feature of the LIXP-spectra, located between 16 and 18 eV, is defined 

by the work function of the sample (Figure 20, left panel). Each incubation cycle produced intense 

spectral lines corresponding to the frontier orbital states of the deposited molecules, while strongly 

attenuating the Au emissions. The secondary cutoff shifted to higher binding energy after each of 

the incubations, indicating a decrease in the Au surface work function due to the interaction 

between the surface and the MOF film. 
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The work functions were determined after each incubation step by measuring the high 

binding energy cutoff at the secondary edge where the spectra ends are located. This value is 

15.9752 eV in case for Au. Hence, the work function can be determined by: the difference between 

the energy of the UV photons (21.2182 eV for He I excitation energy) and the Au binding energy 

(black spectrum) of the secondary edge 15.9752 eV, and by adding the analyzer broadening 

(analyser correction factor) of approximately 0.1 eV. Similarly, the resultant work function values 

after depositing the SAM and MOF layers, 4.3 eV and 5.16 eV respectively, and these were 

determined from the LIXPS measurements rather than the UPS measurements to avoid any 

charging artifacts or photochemical surface modifications that can occur during the UPS 

measurement.  

The valence bands and the HOMO regions after background subtraction are shown in 

Figure 20, right panel, the bottom (black) spectrum shows the typical emissions for a clean Au 

surface after in situ sputtering. After step-by-step incubations of the metal ions and the organic 

ligands, the Au features are attenuated and replaced by emissions related to the valence 

bands/HOMO levels of the SAM film (red spectrum) and the MOF film (green, blue, and purple 

spectra). 
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Figure 20 LIXPS and UP spectra before and after step-by-step incubation of sputter cleaned Au 

functionalized substrate in: (A) in the metal ion Cu(NO3)2 then in the organic ligands TCPP for 

three cycles sequentially, (B) in both the metal ion and the organic ligand solution for three cycles 

sequentially, and (C) only in a TCPP solution for two cycles. Their normalized secondary edges 

were measured with LIXPS before (LIXPSa) and after (LIXPSb) UPS and are shown in the left 

panel. The complete normalized UP spectra are displayed in the middle. The right panel shows 

the evolution of the valence band/HOMO emission features through the deposition process. 

Adapted with permission from [40]. Copyright 2016, American Chemical Society. 
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4.5 Discussion 

The data show that the film only grows when the surface of the SAM substrate is ‘seeded’ 

for the growth process with the Cu(NO3)2 SBUs. The second control experiment (C) showed that 

no significant layer growth occurs during incubation in TCPP without a prior deposition of 

Cu(NO3)2. This is a good indicator that a MOF structure is indeed growing. This is supported by 

the emergence of an additional emission at about 400 eV, which indicates the formation of bonds 

between the Cu(NO3)2 building blocks and the TCPP molecules. Unfortunately, a direct proof of 

the formed layer structure was not possible with our experimental setup. Since photoemission 

spectroscopy experiments with in-situ preparation require the deposition of ultra-thin layers to 

prevent charging artifacts from occurring the available sample preparation facilities are not set-up 

for the deposition of films thick enough for XRD experiments. Hence, further experiments are 

needed to clarify the crystal structure directly. 

The UPS valence bands spectra of the MOF films show a four-peak structure that closely 

resembles spectra measured recently on in-vacuum deposited Co metalloporphyrin multilayer 

films[67] and free base porphyrin[88]. However, the Cu 2p energy shifts to higher binding energies 

and the N1s to lower binding energies suggest that the interaction between the Cu(NO3)2 building 

blocks and the TCPP molecules also leads to a metallization of the porphyrin molecules. This was 

taken into account for the DOS calculations where both free base TCPP and CuTCPP molecules 

connected to Cu paddlewheels were assembled into the MOF structures. The measured UPS 

spectrum of free base TCPP in comparison with the calculated DOS structures of both free base 

TCPP and CuTCPP are shown in Figure 21, and Figure 22, respectively. 

The spectrum is background subtracted and the calculated DOS curves were shifted to 

match the peak positions. This was necessary since the calculation was performed on a slab of the 
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MOF structure suspended in vacuum, while the physical film was deposited on an Au/SAM 

substrate, which references its electronic structure to the substrate surface via interface dipoles.  

 

The spectrum shows four emission peaks below the Fermi level. The peaks are at 1.5 eV, 

3.75 eV, 6.35 eV and 8.75 eV in both experiment (black) and computed DOS (red). These 

emissions can be mainly assigned to C 2p, O1s, N 2p, Cu 2p and H 1s orbitals. This is evident 

from the projected DOS curves in Figure 20 and Figure 21, which show the individual 

contributions from each of the atomic species present in the prepared films.  

 The Cu 2p emission peak has a major and broader contribution from CuTCPP molecules 

than TCPP molecules. Not surprisingly, this peak is also the emission feature that shows the most 

significant differences relative to the spectrum measured on a pure TCPP film[89]. 

Figure 21 DOS comparison between the experimental and computational results. Four emission 

peaks above the Fermi level are shown in blue line from UP spectra of the MOF thin film growth 

consisted of Cu(NO3)2 and TCPP on top of functionalized Au substrate. The computational DOS 

is in red line and PDOS from each individual atomic contribution are presented with different 

colors. Adapted with permission from [40]. Copyright 2016, American Chemical Society. 
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It is denoted from various experiments found in literature that there are significant 

similarities between UPS spectral features of metallated and H2-porphyrin or H2 Phthalocyanine 

thin films [67, 89]. This concludes that the experimental electronic structure of the deposited MOF 

multilayer film Figure 22 has similar distinguished spectral features compared to that of pure TPP 

multilayer film[67], [68], but differs from a TCPP monolayer film[90]. 

In the area of the Fermi edge, the experimental spectrum of CuTCPP connected to Cu-

paddlewheels (black spectrum) shows a peak of the highest occupied states around 1.5 eV which 

agrees with the corresponding peaks in the theoretical DOS (red spectra) of free and metallated 

TCPP in Figure 21 and 22, respectively.  

 

Figure 22 DOS comparison between the experimental UPS, IPES, and computational results. 

Four emission peaks above the Fermi level are shown in blue line from UP spectra of the MOF 

thin film growth consisted of Cu(NO3)2 and CuTCPP on top of functionalized Au substrate. The 

computational DOS is in red line and PDOS from each individual atomic contribution are 

presented with different colors. Adapted with permission from [40]. Copyright 2016, American 

Chemical Society. 
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The HOMO orbitals of CuTCPP can be seen in Figure 23a and 6b with spin-up and spin-

down, respectively. The Lowest Unoccupied Molecular (LUMO) orbitals of CuTCPP with spin-

up on the upper copper and the other is spin down on the lower copper paddle-wheel are shown in 

Figure 6c and 6d, respectively.  The band gap value obtained from the DFT calculation for 

CuTCPP is 2.07 eV. The LUMO and HOMO of TCPP connected to copper paddle wheels can be 

seen as shown in Figure 6e and 6f, respectively. The corresponding band gap value obtained from 

the DFT calculation is 0.95 eV. 

 

Figure 23 Computed structure of CuTCPP connected to Cu paddle wheels: a) HOMO orbital with 

spin-up, b) HOMO orbital with spin-down, c) LUMO orbital with spin-up, and d) LUMO orbital 

with spin down. Computed structure of TCPP connected to Cu paddle wheels: e) LUMO orbital, 

and f) HOMO Orbital. Adapted with permission from [40]. Copyright 2016, American Chemical 

Society. 
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The onset of the first UPS peak from the MOF (CuTCPP) experimental result (black 

spectrum) in Figure 22 located at the lowest binding energy 0.9 eV represents the hole injection 

barrier фh of the HOMO level at the Au functionalized surface/MOF interface, and the onset of the 

first IPES peak from the same experiment (gray spectrum) revealed at 1.15 eV which represents 

the electron injection barrier фe of the LUMO level which was shifted by 0.43 eV taking the energy 

resolution into account as shown in the electronic structure of Figure 24. The corresponding 

experimental band gap is 2.05 eV, and this agrees with the transfer gap value of 2.07 eV obtained 

from the full range of the computational DFT calculations of the DOS; and this also suggests that 

the interaction between the Cu(NO3)2 building blocks and the TCPP molecules also leads to a 

metallization of the porphyrin molecules. In contrast, the transfer gap values for porphyrin and its 

derivatives vary in the literature from 2.34 eV up to 2.9 eV[88], [69].   
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The ionization energy (Eion) of the MOF, found to be 6.06 eV, was determined by adding 

the resultant work function of the MOF (CuTCPP) to the hole injection barrier. Although the Fermi 

level is close to the HOMO of the MOF and the hole injection barrier is smaller than the electron 

injection barrier, it is difficult to infer the conduction type due to the low carrier density in the very 

thin MOF film (11.27 nm), and the energy of the frontier orbitals of the MOF layered structures 

depends strongly on the metal work function, and the SAM. The HOMO onset of the SAM 

revealed at 1.7 eV which was obtained from the UPS measurement from Figure 3 (red spectrum) 

and the corresponding HOMO-LUMO gap is 4-4.1 eV which was adapted from the work published 

in reference [91]. 

A scanning electronic microscope (SEM) produced an image shown in Figure 25 revealing 

the topography of the MOF thin film formation. Focused ion beam was also incorporated as 

presented in Figure 26 to support the presence of the fabricated MOF film.  Out-of-plane Grazing 

Figure 24 Electronic structure of the interface of the MOF (CuTCPP) 2D thin film grown on Au 

functionalized surface as determined from the UP-, IPE- and LIXP-spectra measurements. 

Adapted with permission from [40]. Copyright 2016, American Chemical Society. 
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incidence technique (GIXRD) measurement was conducted with θ-2θ scans at an incidence angle 

𝛼 of 0.2° as shown in Figure 27, and unique peaks observed from the MOF and the SAM at around 

19.59∘ and 38.38∘assigned to (002) from and (003), respectively which supports the film grows in 

a planer fashion to the substrate surface which concurs with GIXRD measurement reported in 

literature.[72, 92] 

MOFs offered the possibility to form significant multilayer growth with injection barriers 

due to the self-organization of the MOF on top of an Au functionalized surface. The bond created 

between the hosting functionalized substrate surface and the MOF offers a path to charge transfer 

due to the hole injection barrier of 0.9 eV, and electron injection barrier value of 1.15 eV. 

 

 

 

Figure 25 SEM image of MOF thin film after third immersion cycle. 
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Figure 26 FIB image of MOF thin film after the third immersion cycle. 

Figure 27 Out-of-plane GIXRD of MOF thin film showing (002) and (003) (top spectrum) 

diffractions assumed from the MOF, and SAM respectively. The bottom is a reference spectrum 

of Au surface. 
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4.6 Conclusion 

Self-assembly of metal-organic framework was used to generate a self-organized 

conductive 2D MOF nano film on top of Au functionalized substrate via sequential step-by-step 

incubation cycles. The growth of the MOF film was determined by ultraviolet and X-ray 

Photoemission spectroscopy and compared to DFT calculations, and this represents a significant 

advance with unprecedented investigation.  

The increase of the emission features of the C 1s, N 1s, O1s and Cu 2p and the decrease of 

the Au 4f, and S 2p obtained through XPS measurement after sequential incubations were reliable 

indicators of the adsorption and the surface coverage of the MOF film on the surface of the 

substrate. The control experiments determined that the metal ion, Cu(NO3)2, was an essential and 

suitable SBU as a linker between SAM and the arm groups of organic ligand. 

The UPS results revealed the orbitals line-up of the MOF molecules bound to the surface 

of the Au functionalized surface, and revealed similar emission spectral features in correlation with 

DFT calculations. The combined results from the first onsets of UP- and IPE- spectra revealed the 

band gap which strongly agrees with the value obtained from DFT calculations. The orbitals line-

up showed significant barriers for both hole and electron injections from the Au functionalized 

surface to the MOF thin film, and this is property at the interface is crucial to design and develop 

conductive MOF materials that can offer an important breakthrough in molecular electronic 

devices. 
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CHAPTER 5: ENERGY LEVEL ALIGNMENTS AND MODIFICATION OF 

INTERFACIAL ELECTRONIC STRUCTURES OF 2D AND 3D SURMOFS2 

 

5.1 Abstract 

Surface mounted metal-organic framework (SURMOF) thin films are of intensive research 

interest for next generation molecular nanoelectronics due to their unique diversity of highly 

ordered nanocrystalline structures, versatility, functionality, tailorable electronic, ionic, and 

magnetic properties.  

Despite the significant progress in MOF materials, fundamental understanding of their 

electronic structures at the interface to achieve favorable energy level alignments with suitable 

hole or electron transport layers remained largely uninvestigated. Tuning and improving their 

interfacial properties can dramatically improve the performance, reliability of novel electronic 

devices and their practical applications. Hence, powerful and unique techniques such as direct and 

inverse Photoemission Spectroscopy (PES) are crucially required to access the frontier electronic 

structures and provide feedback on the design of SURMOF 2D-, and 3D- thin films in order to 

promote efficient charge injection, separation, and enhance the retention, light emission, or 

absorption in devices.  

The presented research successfully demonstrates tuning of the electronic structures of 

porphyrin paddlewheel frameworks which were synthesized by liquid-phase epitaxy (LPE) on Au 

prefunctionalized surface with 4-mercaptopyridine (Mpy) in a glove box attached to Ultra-high 

                                                 

2This chapter is submitted to a journal for publication and is awaiting review.
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vacuum (UHV) PES. Secondary Building Unit (SBU) based on Cu(OAc)2paddlewheeled to free-

base-, and metalated- conductive ligands (5,10,15,20-tetrakis(4-carboxyphenyl) porphyrin) 

MTCPP (M= Co, Ni, or free metal) to build 2D SURMOF. Pillaring linkers Pyrazine (Pz) and 

4,4’-Bipyridine (Bipy) were embedded in between the 2D frameworks which led to the 

construction of 3D SURMOFs. 

Systematic intentional modifications of interfacial electronic structures of the fabricated 

films were characterized by LIXPS, UPS, and IPES which demonstrate unprecedented energy 

level alignments at the SURMOF interfaces. Evidence of the thin film growth and interactions was 

observed by XPS. Thus, these exceptional understandings of tailored HOMO-LUMO levels, 

transfer gaps, work function values, interfacial dipoles, ionization potentials, and electron affinities 

provided a unique feedback on the designed SURMOFs. The correlated results provide a 

significant advancement and breakthrough to develop novel electronic devices requiring tunability 

with opportunity to integrate complex functions. 

5.2 Introduction 

MOFs have been a major focus of contemporary materials research in recent years which 

are attractive for various electronic devices[15, 16, 93-95] and applications.[96, 97] MOFs exhibit 

interesting electronic, ionic, and magnetic[98, 99] properties, and offer exceptional nanoscale 

porosity which enables selective mass transfer throughout the material. In the context of electronic 

materials this offers an additional charge transfer path via ion transfer. These properties offer 

interesting opportunities for the design of the next generation of molecular-scale electronics. Their 

versatile nature also enables diversity of rich structures with different dimensionalities, they can 

be deposited over extremely large surface areas, possess mechanical flexibility, and are lightweight 

materials offering low production cost using various thin film deposition techniques. 
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The presented research aims to shed more light on the electronic properties of conductive 

MOF materials using photoelectron spectroscopy combined with in-situ preparation of MOF 

structures. This method has been successfully applied to complex organic materials in recent years 

making it an interesting approach for the investigation of the electronic properties of conductive 

MOF structures. Examples of such PES measurements are experiments on conjugated polymers 

Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene](MEH-PPV),[100,101] Polythioph-

ene (P3HT),[102] and biomolecules such as ribonucleic acid (RNA),[103] homopolymers[104] 

and peptides,[105] TiO2,[86] CdSe nano-crystals,[106] and recently on a SURMOF 2D thin 

film.[40]  Despite the significant breakthroughs in synthesizing conductive MOFs,[14] the 

fundamental understanding of their electronic properties in contact with other materials at 

interfaces remains largely uninvestigated. The energy level alignment between metal electrodes 

and MOFs controls charge carrier injection, the strength of internal electric fields for ionic 

transport through the materials. Hence, surface science techniques such as direct and inverse (PES) 

are crucial to study the frontier energy levels and to give a feedback on the design of SURMOFs.  

Among a wide variety of organic conductive ligands presented in the literature,[14-16] 

porphyrin molecules [17, 18, 107] are attractive candidates in building conductive MOF nano thin 

films on wafer surfaces due to the diversity of their molecular structures, functionalization, core 

metalation, tunability, and they are excellent hosts for guest confinements such as electrolyte ions 

within the pores. In turn, SURMOFs based on porphyrin derivatives are suitable for molecular 

electronic applications due to the their semiconductive, and redox properties, which compromise 

π-cation radicals and multiple cationic states and their capability to transport and store charges for 

extended periods. In this work, porphyrin paddlewheel frameworks were synthesized by Liquid 

Phase Epitaxy (LPE) using free base and metalated conductive organic ligands (5,10,15,20-
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tetrakis(4-carboxyphenyl) porphyrin) MTCPP (M= Co, Ni, or free metal), and SBU based on 

Cu(OAc)2 were incorporated to construct conductive 2D SURMOFs. Whereas, further integration 

of various organic pillaring linkers such as Pz or Bipy between the 2D frameworks led to the 

construction of 3D SURMOFs with remarkable change in electronic properties. The self-

assembled 2D and 3D thin films were deposited from solutions via sequential step by step synthesis 

on pre-functionalized gold surfaces with 4-mercaptopyridine (Mpy) in a glove box attached to PES 

as demonstrated in the experimental section. The resultant electronic structures of the SAM, 2D-, 

and 3D- SURMOFs and their chemical interactions at the interfaces were characterized by the 

following surface science techniques: low intensity XPS (LIXPS) which revealed information 

about work function values, ultraviolet photoemission spectroscopy (UPS) gave valuable insights 

about both the binding of HOMO energy levels and the work function values, XPS  revealed  the 

interfacial chemical interactions and monitored the film growth, and inverse photoemission 

spectroscopy (IPES) provided information about the LUMO energy levels. The obtained results 

provide crucial information that SURMOFs uncover a significant tuning of their electronic 

structures and energy level alignments relevant to Fermi level through selection of MOF 

components by two approaches (i) various metalated TCPP cores, and (ii) different pillaring 

linkers. 

In this context, seven MOF experiments were conducted and their corresponding energy 

band diagrams were extracted from the PES measurements, which revealed essential 

understanding of the electronic properties that SURMOFs show unique tunability to switch from 

p-type to n-type material, and can conduct positive charge carriers (holes) and negative charge 

carriers (electrons), respectively. The result findings allow for the creation of functional electronic 

materials via designing hybrid hetero-junction structures with internal donor-acceptor properties 
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and redox shuttle mediators acting as solid-state electrolytes. The transfer band gap values of the 

fabricated 2D and 3D films demonstrate tunability ranging from 0.84 – 2.8 eV, which makes it 

attractive to fabricate and develop hybrid and Tandem Dye-Sensitized solar cells fulfilling good 

responsivity to wide light absorption. Other interesting applications that rely on multi-

heteroepitaxial systems where MOFs can satisfy the requirements of low and high work functions 

with donor and acceptor properties are thermoelectric convertors and memristors. Therefore, MOF 

materials can open up the possibility to adapt heterogeneous integration of new technologies with 

particularly attractive complex functions.  

5.3 Experimental Section 

5.3.1 Materials: MOF Materials and Synthesis 

Cu(OAc)2 and MTCPP (5,10,15,20-tetrakis(4-carboxyphenyl) porphyrin); 4-

mercaptopyridine (96%), 4,4′−Bipyridine, Pyrazine, as well as anhydrous ethanol were purchased 

from Fisher Scientific. The N,N-dimethylformamide (DMF), (ACS, 99.8+%) was obtained from 

Alfa Aesar, and the thin film Au (100 nm Au deposited on a 20 nm Ti adhesion layer on glass 

slides) substrates were purchased from EMF Corp. (Ithaca, NY). 

5.3.2 Deposition Technique 

LPE conducted previously on functionalized surfaces[41], is adapted in the physical 

experiments as modular step by step assembly process. It offers a high level of control over 

chemical functionalization and yields preferred nanocrystal orientation.[22, 23] MOFs were also 

mounted on various terminating functional groups (e.g., –N,[40] –NO2, –NH2, –COOH, and –OH 

moieties)[41] as reported in literature on a wide variety of surfaces, and this process is compatible 

with vacuum technology and nanofabrication, and was successfully performed in a glove box 

attached to surface science system (PES) for in situ-measurements. 
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5.3.3 In-situ Film Preparation 

Glass slides coated with 5 nm Ti adhesion layer and 100 nm Au thin film were cut into 1×1 

cm2 squares by diamond scribing, then mounted onto a sample holder and fixed on the corners via 

screws. This enabled good Ohmic contacts between the Au film and the chamber ground to avoid 

charging during PES measurements. Three-step cleaning process using acetone, methanol, and 

deionized water was performed on the Au samples to remove organic impurities, dust particles, 

and minimize contamination, followed by drying with a 99.995% N2 gun prior to sputtering step. 

The solvent-cleaned samples were entered a homemade acrylic glovebox filled with 99.995% N2 

and was kept under slight overpressure to suppress sample contamination from the ambient 

environment during film growth. The glovebox is attached to the fast entry load lock to enable a 

direct transfer of the solvent-cleaned samples into the PES chamber. 

5.3.4 Direct and Inverse PES System 

All PES experiments were carried out in a multichamber system (SPECS Nano Analysis 

GmbH, Berlin, Germany) under UHV conditions (2×10-10 mbar base pressure). The system 

consists of a fast entry load lock, transfer chamber for sputtering, and analysis chambers equipped 

with X-ray, ultraviolet, and inverse photoemission spectroscopy (XPS, UPS, and IPES 

respectively). After transferring the solvent-cleaned samples from the glove box into UHV 

chamber, the Au surfaces were sputtered with Ar plasma using SPECS IQE 11/35 ion source with 

a kinetic energy of 5 keV and an emission current of 20 mA at 9 x 10-6 Torr for 40 min, then the 

cleaned Au surfaces, were  transferred to analysis chambers for PES characterization sequence 

beginning with an LIXPS measurement (Mg K, 1253.6 eV, standby mode: 0.1 mA emission 

current), followed by UPS (He I, 21.2182 eV), then XPS (Mg K, 1253.6 eV, 20 mA emission 

current), and finally an IPES measurement (electron gun, Kimball ELG-2/EGPS-1022, and a 



www.manaraa.com

 

62 

Geiger counter with an energy resolution of about 0.43 eV). This analysis was preformed to 

establish a reference measurement of the Au surface before the film growth. The deposition 

process started by transferring the sputtered Au sample back to the glove box for the SAM 

incubation. The sample was placed in a vial containing the 1mM SAM solution of Mpy in ethanol 

which was pre-sonicated in ultrasound bath at 40 °C for 15 min. The vial was sealed and kept in 

the glovebox at room temperature, then the sample was removed from SAM solution after 20 min, 

and dried with a stream of 99.995% N2 prior and post rinsing step with ethanol. The 

prefunctionalized sample with Mpy was loaded back into the analyzing chamber for PES 

measurement, then it was sent out to the glove box for the MOF incubation. 

5.3.5 2D MOF Experiment 

Experiment A (Exp A) consisted of four different samples (S1-S4) as depicted in Figure 

28. The prefunctionalized Au substrates were alternately immersed into the metal ion solution 

(13.329 mM Cu(OAc)2 solution in DMF) for 30 min followed by an immersion step in various 

organic ligand solutions (1.2645 mM MTCPP in DMF, where M: free metal, Ni, or Co) for an 

additional 1 h, three-six sequential incubation cycles were performed in the glovebox at room 

temperature. In between each immersion step, the substrate was dried in a stream of 99.995% N2 

prior and post rinsing step with EtOH to remove unreacted chemical species.  Following each 

individual immersion cycle, the surface was characterized with the LIXPS/UPS/XPS/IPES 

measurement sequence. 

5.3.6 3D MOF Experiments 

Experiment B (Exp B) consisted of three different samples (S1-S3) as depicted in Figure 

28: The pre-functionalized Au surfaces were alternately immersed into the metal ion solution 

(13.329 mM Cu(OAc)2 solution in DMF) for 30 min followed by an immersion step in the 
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corresponding organic ligand solution (1.2645 mM TCPP or CoTCPP in DMF) for an 1 h, then in 

the pillaring linker solution (0.05 M of Pz or Bipy solution in EtOH) for additional 30 min. Three-

six incubation cycles followed by drying-rinsing-drying sequence identical to experiment (A), then 

each sample was transferred into attached UHV systems for PES and IPES measurements. 
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Figure 28 Schematic depiction of idialized 2D and 3D SURMOF growth sequence in a glove box: 

Films were grown by incubation on Mpy SAM-terminated Au surfaces. Four samples in Exp A 

(S1-S4) were incubated in the same metal ion solution, followed by immersions into the 

corresponding organic ligand solution (MTCPP, where M: Ni, Co, or free metal) for 2D SURMOF 

films; and by incorporating pillaring linkers (Pz or Bipy) led to 3D SURMOF film construction. 

Each incubation step was completed by rinsing the sample in EtOH, then each sample was 

transferred into UHV PES system for characterizations. 
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5.4 Results and Discussion 

5.4.1 Work Function Measurements by LIXPS 

Work function measurements by LIXPS. LIXPS uses the XPS, an X-ray gun in its ‘stand 

by mode’ (Mg K, 1253.6 eV, 0.1 mA emission current) to perform successful work function 

measured from the secondary edges located between 16 and 18 eV of the spectra by fitting straight 

lines into their low kinetic energy cut-off which is formed by inelastic scattered photoelectrons, 

and by determining the intersect with the base line of the spectra. This technique prevents the 

detection of charging artifacts in low conductive samples that cause peak shifts during UPS 

measurements. The spectrum in Figures 29 and 30 shows LIXPSa (single lines), and LIXPSb 

(dashed lines) spectra as measured prior and post UPS measurements, respectively of four samples 

of Exp A (S1-S4), and three samples of Exp B (S1-S3). The values of the work functions are 

determined by the difference between the energy of the UV photons (21.2182 eV for He I 

excitation energy) and the binding energy edges of the corresponding spectra. The analyser 

broadening of ± 0.1 eV was added to the work function values. All calculated data evaluations of 

the spectrum shown in Table S1 were acquired by Igor Prof software (Wavemetrics).  

5.4.1.1 Work Function Measurements of 2D SURMOFs 

The resultant work function values of Exp A, S1 are derived from LIXPSa as shown in 

Figure 29 and revealed at a value of 4.77 eV after the third incubation cycle in TCPP (Cycle 3). 

However, after annealing the same sample (Exp A, S2) at 80 ˚C the work function value from 

LIXPSa (cycle 3) was increased by 0.1 eV, and expected charging artifact observed in UPS 

measurement causing the secondary edge to shift down to lower binding energy by 0.89 eV. The 

resultant work functions values of NiTCPP (Exp A, S3) and CoTCPP (Exp A, S4) ligands obtained 

after the third incubation cycles (cycle 3) are 4.59 and 4.88 eV, respectively. This trend of 
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increasing in work function values occurred systematically from TCPP, then with changing the 

metalloporphyrin ligand from NiTCPP, to CoTCPP. 

 

5.4.1.2 Work Function Measurements of 3D SURMOFs 

The resultant work function of Exp B, S1 derived from spectrum shown in Figure 30 (left 

panel) which belongs to TCPP when pillared with Pz molecule after the third incubation cycle 

Figure 29 LIXPSa was measured before (single lines) and LIXPSb after (dashed line) UPS 

measurements after incubation of the functionalized Au surface in: Cu(OAc)2, and then in the 

corresponding organic ligand or pillaring linker solutions. Exp A shows resultant work function 

measurements of four samples (S1-S4) after third incubation cycles in the corresponding ligand 

solutions of TCPP, TCPP (control), NiTCPP, or CoTCPP, respectively. 
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(cycle 3) is 4.77 eV. However, when Bipy molecule was used (Exp B, S2) the work function value 

of the same organic ligand has decreased to 3.72 eV illustrated in Figure 30 (middle panel). This 

implicates a lengthier pillaring linker incorporates in decreasing the work function of the resultant 

MOF thin film. Furthermore, when ligand was replaced by CoTCPP pillared with Bipy (Exp B, 

S3), its resultant work function value is decreased to 4.52 eV in comparison with free base TCPP 

ligand (Exp, S2).  

It is denoted that in all LIXPS experiments that post each incubation cycle, the secondary 

cut-off shifts to higher binding energies which is an indication of reduction in the Au work function 

as the MOF layers grow, charging artifacts observed in UPS measurements, for this reason work 

function values obtained from LIXPSa spectra should be taken into accounts.  Furthermore, the 

work function of TCPP molecule can be tuned by using various core metals or pillaring linkers to 

match between the work function of MOF material and that of the substrate to achieve efficient 

hole or electron transport properties. 
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Figure 30 LIXPSa was measured before (single lines) and LIXPSb after (dashed line) UPS 

measurements after incubation of the functionalized Au surface in: Cu(OAc)2, and then in the 

corresponding organic ligand or pillaring linker solutions. Exp B shows measurements of three 

samples S1 (left panel), S2 (middle panel), and S3 (right panel) post each incubation cycle in 

MTCPP (M= free metal, or Co) with pillaring linkers of Pz, or Bipy. 
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Table 1 Comparison between the resultant work function values from LIXP-, IPE, and UP-spectra 

measurement of 2D and 3D SURMOFs obtained from Exp A (S1-S4), and Exp B (S1-S3). Exp A 

(S1-S3) shows work function values after incubation cycles in ligand solution of TCPP, NiTCPP, 

or CoTCPP, respectively; Exp B (S1-S2) show measurements post each incubation cycle in TCPP, 

and pillaring linkers of Pz, or Bipy. 

 

 

 

  

 Work function (eV) LIXPSa  UPS  LIXPSb 

Exp A, S1 Au 5.34 5.38 5.34 

SAM 4.32 4.07 3.90 

Cu (cycle 1) 4.43 4.21 4.30 

TCPP (cycle 1) 4.47 4.23 4.25 

TCPP (cycle 3) 4.77 4.66 4.69 

Exp A, S2 TCPP (cycle 3, annealed) 4.88 3.76 4.65 

Exp A, S3 NiTCPP (cycle 3) 4.59 4.61 4.72 

Exp A, S4 CoTCPP (cycle 3) 4.88 4.73 4.73 

Exp B, S1 Pz (cycle 1) 4.65 4.58 4.49 

Cu (cycle 2) 4.69 4.45 4.62 

TCPP (cycle 2) 4.44 4.50 4.33 

Pz (cycle 2) 4.56 4.41 4.25 

Cu (cycle 3) 4.68 4.78 4.56 

TCPP (cycle 3) 4.77 4.44 4.67 

Exp B, S2 Bipy (cycle 1) 4.36 3.56 3.94 

Cu (cycle 2) 4.43 3.73 4.18 

TCPP (cycle 2) 4.21 2.73 3.90 

Bipy (cycle 2) 4.12 2.82 3.76 

Cu (cycle 3) 4.46 3.18 4.36 

TCPP (cycle 3) 3.72 2.17 3.90 

Bipy (cycle 3) 3.67 0.76 3.58 

Cu (cycle 4) 4.66 1.99 4.22 

TCPP (cycle 4) 4.54 2.48 4.48 

Exp B, S3 CoTCPP (cycle 3) 4.52 4.06 4.44 
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A comparison between the work functions with charging artifacts from UPS measurements 

plotted as shown in Figure 31. The obtained work function values of 2D and 3D MOF films show 

increase in their work functions as the multilayers form relative to the work function of the Au 

surface, and this upward shift was also demonstrated by Yun Bai et al on porphyrin films.[108] 

 

5.4.2 UPS and IPES Measurements  

The samples in each experiment were characterized post LIXPSa measurements by UPS. 

The UP-spectrum were normalized and the HOMO regions after background subtractions are 

revealed above Fermi level. The work function values from UPS measurements in Table 1 were 

derived from the locations of the cut-off features by fitting procedures, and the values obtained 

were adjusted by the analyzer broadening factor. The black spectrum in Figure 37 shows typical 

emissions for a clean Au surface after in situ sputtering, these features were replaced by features 

Figure 31 Comparison between the resultant work function values from LIXP-, IPE, and UP-

spectra measurement of 2D and 3D SURMOFs obtained from Exp A (S1-S4), and Exp B (S1-

S3). LIXPSa, blue line; LIXPSb, gray line; UPS, red line. Charging artifacts are observed when 

LIXPSb does not shift back after UPS measurement. Hence, LIXPSa data should be taken into 

account. The difference between LIXPSa and LIXPSb values are labeled. 
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which attributed to the SAM, porphyrin derivatives (organic ligands), and pillaring linkers after 

samples’ incubation. The presented UPS valence bands of the 2D and 3D MOF thin films spectra 

reveal distinguished and discernible a four-peak feature which are similar to conventional 

porphyrin films reported in literature[109],[110],[111],[40].The shape of these peaks indicates the 

growth of multilayered structures and this is supported by the absence of Fermi edge as 

demonstrated by Gottfried et al[67]. and Friesen[112]. The energy gap between free base and 

metalated porphyrin ligands decreased from TCPP, to NiTCPP, and CoTCPP due to the porphyrin 

occupied and unoccupied molecular orbitals, and their redox states that are sensitive to the energy 

of 3d-orbitals of various core metals as explained by M.-S.Liao and co-workers[113]. The 

incorporation of pillaring linkers Pz and Bipy with axial ligations have significantly modified the 

electronic structures of MOF films. These modifications have substantial influence on the 

alignments of HOMO and LUMO levels relevant to the fermi level as demonstrated in the energy 

diagrams of 2D and 3D SURMOFs. 

5.4.2.1 Valence and Conduction Bands of 2D SURMOFs 

UP-and IPE spectra of four samples fabricated with the same metal ion Cu(OAc)2 

paddlewheeled to various organic ligands as shown in Exp A, S1: TCPP; S2: TCPP (annealed at 

80 ˚C); S3: NiTCPP; and S4: CoTCPP are shown in Figure 32. Their corresponding work function 

values derived from the UPS secondary cutoff edges after third incubation cycles are 4.66, 3.76, 

4.61, and 4.73 eV respectively, these values roughly agree with the work functions obtained from 

LIXPS measurements (except for the annealed sample, S2), and their corresponding transfer band 

gap values are 2.05, 2, 1.35, and 0.84 eV, respectively. The band gap value of Cu(OAc)2 

coordinated to TCPP molecules (Exp A, S1) found at 2.05 eV agreed very well with the band gap 

value of 2.05 eV reported from Cu(NO3)2 with the same organic ligand.[40] In contrast, the optical 
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band gap value of TCPP molecule is 2.9 eV which was obtained from UV-Vis spectrophotometry 

in literature,[114] the low band gap value is due to the presence of Cu(OAc)2 in a MOF structure. 

The transfer band gap value of Cu(OAc)2 coordinated to NiTCPP ligand (Exp A, S2) revealed at 

1.35 eV which differs from the optical band gap values of 2.9-3.06 eV found in literature[115]; 

however, the reported ligand (NiTCPP) was adsorbed on TiO2 surface and without SBUs. The 

transfer band gap value of Cu(OAc)2 coordinated to CoTCPP ligand (Exp A, S4) revealed at 0.84 

eV in contrast to the optical band gap values varied between 2.4-3.1 eV in literature.[116, 117] 

This implicates that various core metals in the porphyrin rings[113], and the presence of chosen 

metal nodes contributed to alter the HOMO/LUMO values, and that guides significantly to tunable 

transfer band gaps of the fabricated 2D MOF thin films. 
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Figure 32 UP- and IPE spectra of 2D SURMOFs for four different samples grown on 

prefunctionalized Au surfaces. Exp A (S1-S4): Cu(OAc)2 paddlewheeled with TCPP, TCPP 

(annealed at 80 ˚C) NiTCPP, and CoTCPP, respectively. Left panel shows full UPS normalized 

spectrum with corresponding secondary edges that determine the work functions which are 

located at high binding energies. Right panel shows HOMO and LUMO regions of 2D films after 

third incubation cycle located above and below Fermi edge, respectively. 
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5.4.2.2 Energy Band Diagram of 2D SURMOFs 

The electronic structures are represented by the energy band diagram for 

Cu(OAc)2 paddlwheeled with TCPP (Exp A, S1) are shown in Figure 33a, the electronic 

properties of Au substrate prefunctionalized with Mpy in all experiments are identical to the work 

published in reference[40]. However, the work function shifts slightly to lower binding energy 

which is attributed to the different processing technique of the SAM growth performed in this 

work. The corresponding work function value of the MOF film is 4.77 eV, the hole Фh and electron 

Фe injection barriers revealed at 0.9 and 1.15 eV respectively, and the transfer band gap value is 

2.05 eV. The interfacial dipole (eD) that affects the injection efficiency is obtained by the 

subtraction of the Mpy work function from that of the MOF and had a value of 0.45 eV. The energy 

separations are represented by both the ionization energy (Eion) that has a value of 5.06 eV 

obtained by adding the work function of the SURMOF to the Фh, and the electron affinity (EEA) 

has a value of 3.62 eV obtained by subtracting the Фe from the work function of the SURMOF. 

 

Figure 33 Electronic structures at the interface of Exp A. (a) S1: 2D MOF thin film grown (Metal 

ion: Cu(OAc)𝟐, Organic ligand: TCPP) on Au prefunctionalized surface as determined from the 

UP-, IPE- and LIXP-spectra measurements. (b) S2: 2D MOF thin film annealed at 80 °C (Metal 

ion: Cu(OAc)𝟐, Organic ligand: TCPP) which was grown on Au prefunctionalized surface as 

determined from the UP-, IPE- and LIXP-spectra measurements. 
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The electronic structures of 2D MOF film which was annealed at 80 ˚C (Exp A, S2) are 

shown in Figure 33b have considerably shifted to higher binding energies in comparison with (Exp 

A, S1). The corresponding work function value is 4.88 eV, the hole Фhand electron Фe injection 

barriers were both revealed at 1 eV respectively, and the corresponding transfer band gap is 2 eV. 

The interfacial dipole (eD) obtained at a value of 0.56 eV. The energy separations representing 

both the ionization energy (Eion) and the electron affinity (EEA) obtained at values of 5.88, and 

3.88 eV, respectively. 

The electronic structures in the energy band diagram of Cu(OAc)2  paddlewheeled with 

NiTCPP (Exp A, S3) shown in Figure 34a have considerably shifted to lower binding energies 

compared to (Exp A, S1). The corresponding work function value is 4.32 eV, the hole Фh and 

electron Фe injection barriers revealed at 0.6 and 0.75 eV respectively, and the corresponding 

transfer band gap is 1.35 eV. The interfacial dipole (eD) obtained at a value of 0.27 eV. The energy 

separations representing both the ionization energy (Eion) and the electron affinity (EEA) obtained 

at values of 5.19, and 3.84 eV, respectively. 

The energy band diagram of Cu(OAc)2 paddlewheeled with CoTCPP (Exp A, S4) is shown 

in Figure 34(b). The corresponding work function value is 4.88 eV, the hole Фh and electron Фe 

injection barriers revealed at 0.7 and 0.14 eV respectively, and the corresponding transfer band 

gap has reached a lowest value of 0.84 eV compared with previous experiments (Exp A, S1-S3). 

The interfacial dipole (eD) obtained at a value of 0.56 eV. The energy separations representing 

both the ionization energy (Eion) and the electron affinity (EEA) obtained at values of 5.88, and 

5.04 eV, respectively. 
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5.4.2.3 Valence and Conduction Bands of 3D SURMOFs 

All UPS- and IPE- spectra (normalized with background subtractions) that correspond to 

the three samples in Exp B (S1-S3) are shown in Figure 35.  

The HOMO and LUMO values obtained obtained that is attributed to the MOF 3D film 

pillared with Pz molecule (Exp B, S1) are 1.2 and 1.6 eV, respectively. The resultant band gap 

value amounts to 2.8 eV which is larger than that of the MOF 2D film (Exp A, S1) formed without 

a pillaring linker. This remarkable upward shift of HOMO and LUMO levels to higher binding 

energies is due to the incorporation of Pz as dopant molecule with 𝜋-electron-donating ability[118] 

of the nitrile group leading to a larger band gap. The normalized UPS spectra with background 

subtraction showing measurements after each incubation step is shown in Figure 36. 

 

 

 

Figure 34 Electronic structures at the interface of Exp A. (a) S3: 2D MOF thin film (Metal ion: 

Cu(OAc)2, Organic ligand: NiTCPP) grown on Au prefunctionalized surface as determined from 

the UP-, IPE- and LIXP-spectra measurements. (b) S4: 2D MOF thin film (Metal ion: Cu(OAc)2, 

Organic ligand: CoTCPP) grown on Au prefunctionalized surface as determined from the UP-, 

IPE- and LIXP-spectra measurements. 
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Figure 35 UP- and IPE spectra of 3D MOF films showing the HOMO and LUMO regions after 

third incubation cycle located above and below Fermi edge, respectively.  Exp B for three 

different samples grown on prefunctionalized Au surfaces. Exp B, S1 (Metal ion: Cu(OAc)2, 

Organic ligand: TCPP, Pillaring Linker: Pz). Exp B, S2 (Metal ion: Cu(OAc)2, Organic ligand: 

TCPP, Pillaring Linker: Bipy). Exp B, S3 (Metal ion: Cu(OAc)2, Organic ligand: CoTCPP, 

Pillaring Linker: Bipy). 
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The HOMO and LUMO values obtained from MOF 3D film pillared with Bipy molecule 

(Exp B, S2) are positioned at 1.65 and 0.74 eV, respectively. The HOMO interestingly has shifted 

to higher binding energy by 0.63 eV compared to the HOMO of Exp B, S1, and palaces the LUMO 

at a lower value of 0.74 eV.  The resultant band gap value is 2.29 eV. In spite of the optical band 

gap of Bipy amounts to 5.3 eV found in literature[119, 120] and with a HOMO positioned at 5.0 

Figure 36 UP spectra of 3D SURMOF thin film of Exp B: S1. (Metal ion: Cu(OAc)2, Organic 

ligand: TCPP, Pillaring Linker: Pz). Left panel shows full UPS normalized spectrum with 

corresponding secondary edges that determine the work functions that are located at high binding 

energies. Left panel shows HOMO regions are located above Fermi edge for the step by step 

growth of the 3D film. 
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eV from UPS measurement; there was a similar straddled HOMO alignment to 1.65 eV by the 

effect of Bipy on phthalocyanine molecule which was reported by Palmgren et al.[121] which is 

in good agreement with the result observed in Exp B, S2. This clearly indicates that the addition 

of various pillaring linkers has a leading impact to tune the electronic properties of 3D MOF thin 

films. The normalized UPS spectra with background subtraction measured after step by step 

growth is shown in Figure 37. 

 

Figure 37 UP spectra of 3D SURMOF thin film of Exp B: S2. (Metal ion: Cu(OAc)2, Organic 

ligand: TCPP, Pillaring Linker: Bipy) Left panel shows full UPS normalized spectrum with 

corresponding secondary edges that determine the work functions that are located at high binding 

energies. Right panel shows HOMO regions are located above Fermi edge for the step by step 

growth of the 3D film. 
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The resultant UP-IPE spectra of metalated porphyrin ligand CoTCPP pillared with Bipy 

molecule (Exp B, S3) after the third incubation cycle is shown in Figure 35. The HOMO has shifted 

to higher binding energy value of 1.05 eV and the LUMO to lower binding energy value of 0.24 

eV, the remarkable decrease in LUMO energy is probably attributed to the presence of the axially 

bonded linkers. This is completely in agreement with the LUMO of about 0.2 eV from Biby as 

reported in literature.[121] The corresponding transfer band gap value is 1.29 eV which is larger 

than that of the 2D MOF thin film formed with CoTCPP (Exp A, S3). Thus, the incorporation of 

Bipy molecule with CoTCPP enabled to decrease the bandgap value to 1.29 eV. In contrast, 

according to the UV-vis measurement, the optical band gap value of CoTCPP ligand is larger and 

varies between 2.4-3.1 eV in literature[116, 117] due to the absence of both the SBUs and the 

pillaring linkers. The normalized UPS spectra is shown in Figure 38.  

  

Figure 38 UP spectra of 3D MOF thin film in Exp B: S3. (Metal ion: Cu(OAc)2, Organic ligand: 

CoTCPP, Pillaring Linker: Bipy) showing full UPS normalized spectrum with corresponding 

secondary edge that determines the work functions located at high binding energies. 
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5.4.2.4 Energy Band Diagram of 3D SURMOFs 

The electronic structures are denoted in the energy band diagram for Cu(OAc)2, 

paddlewheeled with TCPP (Exp B, S1) with the amalgamation of pillaring linker (Pz) is shown in 

Figure 39. The corresponding work function value is 4.77 eV, the hole Фh and electron Фe 

injection barriers revealed at 1.2 and 1.6 eV respectively, and the corresponding transfer band gap 

is 2.8 eV. The interfacial dipole (eD) that affects the injection efficiency is obtained by the 

subtraction of the Mpy work function from that of the MOF and has a value of 0.45 eV.  The 

energy separations are represented by both the ionization energy (Eion) with a value of 5.97 eV 

obtained by adding the work function of the SURMOF to the Фh, and the electron affinity (EEA) 

value is 3.17 eV obtained by subtracting the Фefrom the work function of the MOF film. 

 

Figure 39 Energy band diagram of 3D MOF thin film of Exp B: S1, (Metal ion: Cu(OAc)2, 

Organic ligand: TCPP, Pillaring linker: Pz) grown on Au prefunctionalized surface as determined 

from the UP-, IPE- and LIXP-spectra measurements. 
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Figure 41 Energy band diagram of 3D MOF thin film of Exp B: S3, (Metal ion: Cu(OAc)2, 

Organic ligand: CoTCPP, Pillaring linker: Bipy) grown on Au prefunctionalized surface as 

determined from the UP-, IPE- and LIXP-spectra measurements. 

Figure 40 Energy band diagram of 3D MOF thin film of Exp B: S2, (Metal ion: Cu(OAc)2, 

Organic ligand: TCPP, Pillaring linker: Bipy) grown on Au prefunctionalized surface as 

determined from the UP-, IPE- and LIXP-spectra measurements. 
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The electronic structures of Cu(OAc)2 paddlewheeled with TCPP (Exp B, S2) which 

pillared with Bipy molecule is shown in Figure 40. The obtained work function value is 4.77 eV, 

the hole Фhand electron Фe injection barriers revealed at 1.65 and 0.64 eV, respectively. The 

interfacial dipole (eD) had a value of 0.45 eV. The ionization energy (Eion) obtained at a value of 

6.42 eV. 

The electronic structures observed in the energy band diagram of Cu(OAc)2 

paddlewheeled with CoTCPP (Exp B, S3) which pillared with Bipy linker is shown in Figure 41. 

The corresponding work function value of the MOF is 4.52 eV, the hole Фh and electron Фe 

injection barriers revealed at 1.05 and 0.24 eV respectively, and the corresponding transfer band 

gap is 1.29 eV. The interfacial dipole (eD) obtained at a value of 0.2 eV. The energy separations 

representing both the ionization energy (Eion) and the electron affinity (EEA) obtained at values of 

5.57, and 5.33 eV, respectively. 

5.4.3 Interfacial and Surface Chemistry Characterizations 

XPS was involved to study the interfacial growth mechanism and surface chemistry of 2D 

and 3D SURMOFs after sequential step-by-step incubations.  

5.4.3.1 XPS of 2D SURMOFs 

The evolution of the Au 4f, C 1s, and Cu 2p core level emission lines through Exp A, S1 

is shown in Figure 42. The black spectrum corresponds to the SURMOF with TCPP experiment 

where the growth occurred at RT. The gray (dashed) spectrum represents S2 with the same organic 

ligand which was annealed at 80 ̊ C. Metalated porphyrin ligands NiTCPP and CoTCPP are shown 

in red and blue, respectively. The green spectrum reveals the emission of SAM features. 

The intensities of Au 4f spectra in Exp A were decreased significantly post each incubation 

cycle (C) which indicate the SURMOF growth with increasing thicknesses. These intensities for 
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SURMOF grown at RT are quite similar after the third incubation cycle, and have substantially 

lowest attenuation post six incubation cycle indicating complete surface coverage. Interestingly, 

the annealed sample (S2) shows more significant growth after the third incubation cycle than other 

samples due the lowest reduction of its Au intensity. The difference in intensities of porphyrin 

materials in different samples correlates to the thickness and surface coverage of the films which 

is related to the dipping process (i.e., the velocity of withdrawing the substrate from the solution), 

where a faster withdrawing speed, produces a thicker film due to pulling more liquids[122] into 

forming wet-dry solid-state MOF films. In contrast, robot dipping[123] or ALD[124] processes 

can produce more consistent layer growth and thicknesses compared with the layer by layer 

process performed in this work. 

The aromatic hydrocarbon related C 1s emission features of both SAM and TCPP 

multilayers produce strong peaks at about 285.6 and 285 eV, respectively. The element in the C 

1s spectra has a smaller emission at about 288.9 eV, which is related to C-O bonds, which are 

found in the COOH groups of Cu(OAc)2 when interacted with TCPP molecule[109],[79]. The 

shift to higher binding energy in S1 post six incubation cycle by 0.9 eV of the organic ligand is 

related to charging artifacts during XPS measurement as the film grows in thickness. 

The Cu 2p emissions from the Cu(OAc)2 show observations of Cu(II) states positioned at 

binding energy values of 932.7 eV and 935.4 eV. However, once the organic ligands were added 

onto the surface, the Cu 2𝑝3/2 emissions show distinguished doublet features after the third 

incubation cycle positioned at 933 and 935 eV respectively, and have substantially shifted to higher 

binding energies and revealed two additional shake-up satellite peaks located in Cu 2𝑝3/2 peak 

region which are positioned at 942 eV and 946 eV. These chemical shifts with the attenuated 

intensities post incubations the samples in the porphyrin solutions, and the peak shapes of the 
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oxidation states Cu (II) concur that Cu paddlewheels (SBUs) were self-assembled in situ by the 

presence of the COOH of porphyrin ligands. 

 

The S 2p emission feature of the SAM has a binding energy of about 162.7 eV consistent 

with S in the thiolate form bonded to an Au surface[40, 125] is shown in the Figure 43. The N 1s 

emission features are shown in Figure 44 (left and middle panel). The initial N 1s core level of the 

SAM reveals a broad peak at about 400.6 eV, which confirms the deposition of Mpy on the Au 

Figure 42 Au 4f, C 1s, and Cu 2p core level XPS spectra of 2D SURMOF measured after 

incubation the prefunctionalized Au substrate in the Cu(OAc)2 solution, then in the 

corresponding organic ligand solution for three to six cycles sequentially.  Black, gray, red, and 

blue spectra represent MOF experiments with the following organic ligands: TCPP, TCPP 

annealed at 80 ˚C, NiTCPP, and CoTCPP respectively. 
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surface. The N 1s spectra measured during the growth of the 2D MOF films from Exp A (S1-S4) 

exhibit distinctly emission features that are attributed to a molecule containing iminic (-N=) and 

pyrolic (-NH-) nitrogen species. These are also indicators that an interaction between Cu (II) states 

and corresponding porphyrin molecules occurred at the surface. These emission lines are located 

at 398.6 eV and 400 eV, respectively; which are in a close agreement with other experiments found 

in the literature[84, 126, 127],[40, 85, 108]. 

  

The analysis of the O 1s core level emission sequence as shown in Figure 44 (right panel) is 

consistent with the Cu 2p, C 1s, and N 1s emission series. The O 1s emission feature present after 

the Cu(OAc)2 growth step is located at 531.4 eV. This emission is attenuated and shifted to a 

higher binding energy value of 532 eV after the third incubation cycle in TCPP and this attributed 

to the COOH groups present in the MOF film observed in Exp A, S1, however charging artifacts 

seen post six incubation cycle as the film gets thicker. The O 1s core emissions in S2, S3, and S4 

revealed with shifts to higher binding energies positioned at 532.4, 533, and 532.2 eV respectively, 

Figure 43 S 2p core level XPS spectrum measured after incubation the Au substrates in 4-

mercaptopyridine solution. 
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which indicate interactions between the SBUs and the corresponding organic ligands took a higher 

binding energy value of 532 eV after the third incubation cycle in TCPP and this attributed to the 

COOH groups present in the MOF film observed in Exp A, S1, however charging artifacts seen 

post six incubation cycle as the film gets thicker. The O 1s core emissions in S2, S3, and S4 

revealed with shifts to higher binding energies positioned at 532.4, 533, and 532.2 eV respectively, 

which indicate interactions between the SBUs and the corresponding organic ligands took place. 

 

   

Figure 44 N 1s, and O 1s core level XPS spectra of 2D SURMOF thin films measured after 

incubation the prefunctionalized Au substrate in the Cu(OAc)2solution, then in the corresponding 

organic ligand solutions for three to six cycles sequentially.  Black, gray, red, and blue spectra 

represent MOF experiments with the following ligands: TCPP, TCPP annealed at 80 ̊ C, NiTCPP, 

and CoTCPP respectively. 
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5.4.3.2 XPS of 3D SURMOFs 

The evolution of the Au 4f, C 1s, and Cu 2p core level emission lines throughout Exp B, 

S1 is shown in Figure 45. The black spectrum from the top reveals the Au 4f emission features 

after first incubation cycle in Pz molecule. The intensities of Au 4f spectra in Exp B were decreased 

significantly post each incubation cycle which indicated the MOF growth with increasing 

thicknesses. The Au 4f intensity shows lowermost attenuation post third incubation cycle.  

The Core level emission lines Exp B, S2 are shown in Figure 8a. The Au 4f emissions show 

good surface coverage post second incubation cycle. The Au 4f core level emissions of metalated 

porphyrin CoTCPP with Bipy (Exp B, S3) after third incubation cycle is shown in Figure 9a.  

The C 1s emission of Exp B, S1 shows aromatic hydrocarbon features in Figure 45 related 

to TCPP multilayers with Pz which is positioned at a binding energy value of 285 eV. The 

distinguishing element in the C 1s spectra has a smaller emission at about 288.6 eV, which is 

attributed to COOH groups of Cu(OAc)2when bound to TCPP molecules in agreement with 

literature.[79, 109] These emissions have shifted to higher binding energies in (Exp B, S2) as 

shown in Figure 47 by about 0.5 eV after the third incubation cycle due to the incorporation of 

Bipy molecule which probably related to the formations of 3D multilayered structure. 

The Cu 2p emissions after deposition of TCPP molecules (purple spectra) shown in Figure 

45 (Exp B, S1) reveal the Cu(II) states have shifted to higher binding energy values of 933.1 and 

935.2 eV. The presence of strong satellite shake-up peaks represents the Cu(II) states in Cu(OAc)2 

form, and the reduction of their intensities after the deposition of TCPP and Pz molecules indicate 

interactions with Cu(OAc)2 took place. The Cu 2p core level emissions after deposition of TCPP 

and Bipy in Figure 8 (Exp B, S2) show expected Cu (II) states positioned at 933 and 935.5 eV and 

have shifted to higher binding energy value of 1.1 eV after the second incubation cycle. The Cu 
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2p core level emissions of CoTCPP of (Exp B, S3) in Figure 49 are identical to the emissions 

observed from the MOF growth reported in Figure 47. 

 

The N 1s core level emissions measured after third deposition cycle of TCPP in Figure 46 

(Exp B, S1) show emissions related to iminic or pyridinic features, and pyrrolic nitrogen species 

positioned at 398.4, and 400.2 eV respectively, the Cu-N species observed after the deposition of 

Pz molecule are positioned at 399.8 eV concurs with the metal-N interactions, these are close with 

Figure 45 Au 4f, C 1s, and Cu 2p core level XPS spectra of 3D SURMOF thin film measured 

after incubation the prefunctionalized Au substrate in the Cu(OAc)2solution, then in the 

corresponding organic ligand solution (TCPP) with the incorporation of pillaring linker solution 

(Pz) for three cycles sequentially. 
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values reported form other experiments.[40, 85, 108, 126-132] These emissions are almost 

consistent with Exp B, S2 as shown in Figure 48, where pyridinic, pyrolic, and Cu-N species are 

positioned at 398.6, 400.4, and 399.4 eV respectively. They exhibit a shift to higher binding energy 

value of 1 eV after the fourth incubation cycle as the MOF grows in thickness. The N 1s peak from 

Exp B, S3 in Figure 50 is positioned at lowest binding energy value of 398.9 eV corresponds to 

the iminic or pyridinic groups, and the Co-N species which are bonded to metal center of TCPP 

revealed binding energy value at 399.5 eV. The highest binding energy value of the peak 

positioned at 400.6 eV is attributed to the pyrolic species from CoTCCP molecule. 

 

Figure 46 N 1s, and O 1s core level XPS spectra of 3D SURMOF measured after incubation the 

prefunctionalized Au substrate in the Cu(OAc)2 solution, then in the corresponding organic 

ligand solution (TCPP) with the incorporation of bridging ligand solution (Pz) for three cycles 

sequentially. 
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The analysis of the O 1s core level emissions sequence prior to the deposition of the 

pillaring linkers is consistent in comparison with the 2D MOF experiments (Exp A, S1-S4). The 

O 1s core level emission feature of Exp B, S1 in Figure 46 after the second deposition cycle of 

Cu(OAc)2 is positioned at 531.7 eV(green spectrum), and this has shifted to higher binding energy 

Figure 47 Au 4f, C 1s, and Cu 2p core level XPS spectra of 3D SURMOF thin film measured 

after incubation the prefunctionalized Au substrate in the Cu(OAc)2 solution, then in the 

corresponding organic ligand solution (TCPP) with the incorporation of pillaring linker solution 

(Bipy) for four cycles sequentially. 
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value of 532 eV after the deposition of TCPP molecules (purple spectrum). The O 1s emission 

features after the first deposition of Cu(OAc)2 in Exp B, S2 located at 531.9 eV, and this peak has 

shifted to higher biding energy value of 532.3 eV when TCPP molecule was incorporated, larger 

shifts to higher binding energies observed after the third deposition cycle. The O 1s core level 

emission retained its binding energy value of 532 Ev for CoTCPP in Exp B, S3 as shown in Figure 

50. 

 

Figure 48 N 1s, and O 1s core level XPS spectra of 3D SURMOF thin film measured after 

incubation the prefunctionalized Au substrate in the Cu(OAc)2solution, then in the corresponding 

organic ligand solution (TCPP) with the incorporation of pillaring linker (Bipy) for three cycles 

sequentially. 
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Figure 49 Au 4f, C 1s, and Cu 2p core level XPS spectra of 3D SURMOF measured after 

incubation the prefunctionalized Au substrate in the Cu(OAc)2solution, then in the 

corresponding organic ligand solution (CoTCPP) with the incorporation of bridging ligand 

solution (Bipy) for three cycles sequentially. 

Figure 50 N 1s, and O 1s core level XPS spectra of 3D SURMOF thin film measured after 

incubation the prefunctionalized Au substrate in the Cu(OAc)2 solution, then in the 

corresponding organic ligand solution (CoTCPP) with the incorporation of bridging ligand 

solution (Bipy) for three cycles sequentially. 
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5.4.4 Crystal Structure Characterization 

5.4.4.1 Grazing-Incidence X-ray Scattering of 2D MOFs 

In Exp A, three additional cycles were deposited on S4 which was selected as a candidate 

for Grazing-incidence X-ray Scattering (GIXS) measurements to reveal the formation of 2D MOF 

thin films, and that can be inferred from the well-resolved in-plane diffraction peaks as shown in 

Figure 51 which assigned with the corresponding miller indices as (hk0) and these commensurate 

well with those found in the literature[72, 133]. The dimensions of the tetragonal cell, obtained 

from Figure S52 and Figure 53, are a= b= 16.27 Å, and c= 9.1 Å respectively, and the space group 

is P4/mmm (No. 123). The unit cell parameters were loaded into GIXSUI software[134] to 

generate the simulated patterns (dashed lines) that matched well with the experimental in-plane 

and out-of plane diffraction peaks. 

The spacing between lamella value is 4.55 Å obtained from out-of-plane measurement 

shown in Figure 52 depicts the MOF growth is in planner direction with respect to the substrate 

which is consistent with the data found in literature[72, 133].  

The qz linecut fitting finds the AB crystal along the c-direction is about 54.4/ 4.55≅ 12 

monolayers or 6 unit cell size (if Dmax was chosen) as manifested in Figure 52(d). The projection 

of expected crystal structure of 2D MOF in Figure 53 was generated based on the crystal data 

published[72] and agrees well with unit cell parameters used in GIXSUI. 
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Figure 51 Grazing-incidence in-plane X-ray scattering of 2D MOF thin film of Exp A, S4. 

(wavelength= 1.1354 Å, incidence angle, α = 0.35°) showing the miller indices of the Bragg 

peaks in order with scattering angle that matched the simulated diffraction patterns generated by 

GIXSUI (dashed lines). 
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Figure 52 (a) Grazing-incidence out-of-plane X-ray scattering of 2D MOF film of Exp A, S4. 

(wavelength= 1.1354 Å, incidence angle, α = 0.35°). Miller indices of the Bragg peaks are (002), 

and (004) in order with scattering angle. (b), (c), and (d) thickness distribution showing the qz 

linecut fitting which finds the AB crystal along c-direction is about 54.4/ 4.8= 12 monolayers or 

6 unit cell size (if Dmax was chosen). 
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5.4.4.2 Grazing-Incidence X-ray Scattering of 3D MOFs 

The formation of 3D MOF thin films after nine deposition cycles can be observed from 

GIXS in Figure 54, in-plane peak diffractions are observed in Exp B, S2 and S3. Measurement on 

S2 was carried out on two different locations in and off the middle of the substrate as illustrated in 

the gold and green spectrum respectively, the resultant peak diffractions are orientation dependent 

because they show significant difference in diffraction patterns. 

The dimensions of the tetragonal cell of Exp B, S2, are a= b= 16.6 Å, and c= 13.39 Å, and 

the space group is P4/mmm (No. 123). Whereas, the dimensions of the tetragonal cell of S3 are a= 

b= 16.6 Å, and c= 24.68 Å. and the space group is I4/mmm. Exp B, S1, shows no significant in-

plane diffractions because the fabricated film was measured after two deposition cycles, however, 

the film shows very broad out-of-plane diffraction peaks. The projections of expected crystal 

structures of 3D MOFs for Exp B, S2, and S3 are shown in Figure 55 and Figure 56 were generated 

based on the crystal data published[48] and agree well with unit cell parameters and the space 

groups used in GIXSUI.  

 

Figure 53 Projections of the expected crystal structure of the 2D MOF thin film (Exp A, S4) on 

the (a) ab plane, and (b) ac plane. C atoms are shown in gray, N atoms in purple, O atoms in red, 

and Cu atoms in orange. (a= b= 16.27 Å, and c= 9.1 Å) 
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Figure 54 (a) Grazing-incidence (a) in-plane, and (b) out-of-plane X-ray scattering of 3D 

SURMOFs of Exp B, S1, S2, and S3. (wavelength= 1.1354 Å, incidence angle, α = 0.35°). Miller 

indices of the Bragg peaks are in order with scattering angle. 

Figure 55 Projections of the expected crystal structure of the 3D MOF thin film (Exp B, S2) on 

the (a) ab plane, and (b) ac plane. C atoms are shown in gray, N atoms in purple, O atoms in red, 

and Cu atoms in orange. (a= b= 16.6 Å, and c= 13.39 Å) 
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5.5 Conclusion  

Energy level alignments and modified interfacial electronic and chemical structures of 

MOF 2D- and 3D- thin films investigated successfully by direct and inverse PES system, 

delivering rich insights about their work functions, HOMO and LUMO levels, tunable transfer 

band gaps, interfacial dipoles, ionization potentials, and electron affinities. The surface, interfacial 

growth, and thicknesses of the fabricated thin films were confirmed by XPS. The results 

demonstrated transfer band gaps varied when the metals in the center of TCPP ring were changed 

in 2D MOF thin films. Tuning the bandgap was also feasible by incorporating and changing the 

length of the pillaring linker in 3D MOF thin films where a lengthier ligand produced a larger band 

gap. Thus, systematic electronic tunability via the core metalation of 2D SURMOF was observed, 

and incorporation of pillared linkers enabled to form the expected 3D SURMOF architectures with 

remarkable energy level alignments. Furthermore, the metalation provided an additional binding 

site to control the framework topology via axial ligations, and hence changed the electronic 

properties from p-type to n-type MOF film. Therefore, controlling the interfacial electronic 

Figure 56 Projections of the expected crystal structure of the 3D MOF thin film (Exp B, S3) on 

the (a) ab plane, and (b) ac plane. C atoms are shown in gray, N atoms in purple, O atoms in red, 

and Cu atoms in orange. (a= b= 16.6 Å, and c= 24.68 Å) 
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structures at the interface of SURMOF can remarkably help to develop and build molecular 

electronic junctions with enhanced performance, desired functionalities and behaviors is 

breakthrough for the next-generation molecular electronic materials and elaborated semiconductor 

technologies. 
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CHAPTER 6: CONCLUSIONS AND FUTURE OUTLOOK 

 

6.1 Conclusions 

This dissertation reports on direct and inverse PES studies on self-assembled 2D and 3D 

MOF thin films via sequential step-by-step incubation cycles on Au prefunctionalized surfaces. 

The resultant interfacial electronic structures of the fabricated films were obtained with their 

corresponding energy band diagrams which show band alignment phenomena due to the 

localazatoin of charge density, and this represents unprecedented PES investigation on the 

conductive MOF thin films. 

The orbitals line-up showed significant modifications of both hole and electron injection 

barriers of the MOF thin films grown on functionlized Au surfaces, and these properties at the 

interface are crucial to achieve efficient charge transfer. Hence, the successful PES measurements 

on porphyrin-based MOFs assessed the band alignment at the interface, and opened up an 

opportunity to design and develop further conductive MOF materials, and this can offer an 

important understanding for the foundation of molecular electronic heterojunctions and devices. 

The growth of the MOF film components was determined by X-ray PES, GIXRD and 

GIXS. The UPS results revealed expected spectral features of the porphyrin MOF component. The 

combined results from the first onsets of UP- and IPE- spectra of 2D SURMOF revealed a transfer 

band gap which strongly agrees with the value obtained from DFT calculations as demonstrated 

in chapter 4. 

The modifications of HOMO and LUMO energy levels along with other electronic 

structures of 2D and 3D SURMOF thin films are of significant novelty and impact due to 
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applications of electronically conductive MOF structures in electronic/optical devices as 

demonstrated in Chapter 5. MOF structures were self-assembled and tuned via the integration of 

organic ligands or pillaring linkers to have specific electronic or optical properties. The HOMO 

and LUMO energy levels and the correlated energy transfer band gaps were modified by the 

selection of free base and various metalloporphyrin derivaties, and this change is attributed to the 

porphyrin occupied and unoccupied molecular orbitals, and their redox state that are sensitive to 

the energy of 3d-orbitals of various core metals. The band banding of the HOMO amd LUMO 

energy levels was due to the presence of the carrier concentration by dopants such as core metals 

or when pillaring linkers which were introduced with electron-donating abilities, therefore, there 

was a subsequent alignment of the energy levels upward or downword with respect to Fermi level. 

According to the experimental transfer band gaps reported in chapter 4 and 5, can enable 

the materials to be suitable for optoelectronic applications which behave as semiconductor and 

undergoe charge separation upon light excitation, and this is the hallmark of selective MOF 

component (i.e. organic ligand or pillaring linker) as semiconductor, and another (i.e. metal ion) 

that can behave simultaneously as an oxidizing or reducing agent.  

The findings of this research promise the tailor-design of MOFs as electronic materials, 

promoting the fabricated SURMOF thin films to be favorable for electron or hole transport layers 

in energy harvesters such as Perovskite solar cells with the aim to enhance the power conversion 

efficiency, in energy storage systems such as conductive nanporous electrodes for supercapacitors, 

as well as semiconductive MOF films as active materials in transistors and memristor devices. 

6.2 Future Outlook 

The conducted photoemission experiments on the self-assembled 2D and 3D MOF thin 

films revealed their physical electronic structure at the interface. The demonstrated HOMO and 
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LUMO energy level alignment phenomena at the MOF thin film interfaces achieved via judicious 

selection of organic conductive ligands and pillaring linkers. The study in this dissertation enables 

further research on electronic structure phenomena of other conductive and functional MOF films. 

An interesting extension of the research would be to study the incorporation of various metal ions 

and the insertion of anions or cations in the pores of the MOF film and reveal their resultant energy 

levels (i.e. band alignment phenomena) at their heterojunction interfaces, which is essential for 

devices and applications that require tunability while providing immediate impact to improve their 

overall performance. 
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The permission below is for the use of material in Figure 2. 
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The permission below is for the use of material in Figure 3. 
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